Volume 33 Issue 5
Sep 2019
Turn off MathJax
Article Contents
SUN Xiaobo, GAO Yubo, XU Peng. Failure and Fracture Characteristics of Al2O3 Ceramics under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 054202. doi: 10.11858/gywlxb.20180695
Citation: SUN Xiaobo, GAO Yubo, XU Peng. Failure and Fracture Characteristics of Al2O3 Ceramics under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 054202. doi: 10.11858/gywlxb.20180695

Failure and Fracture Characteristics of Al2O3 Ceramics under Impact Loading

doi: 10.11858/gywlxb.20180695
  • Received Date: 03 Dec 2018
  • Rev Recd Date: 03 Jan 2019
  • Publish Date: 25 Jul 2019
  • As one of the typical brittle materials, ceramics are highly sensitive to deformation. Under strong dynamic loads, it exhibits mechanical response characteristics completely different from ductile metal materials which involve damage and destructive behavior. In this study, the split Hopkinson bar test system is used to carry out impact loading tests on Al2O3 ceramics obtaining the dynamic tensile/compressive properties of the ceramics, as well as the relationship of fracture characteristics with strain rate. In addition, the mechanical properties and fragment size of brittle ceramic materials under different strain rates are further studied by using the theoretical methods of energy conservation and dynamics. The results show that the tensile and compressive strength of Al2O3 ceramics is positively correlated with strain rate under impact loading. Furthermore, the particle sizes of Al2O3 ceramic samples vary greatly under the action of the one-dimensional stress wave. With the increase of loading strain rate, the total number of broken ceramic particles will increase and the average particle size will decrease, while the influence of stress concentration will gradually weaken. Finally, the fragment size of brittle materials simulated by the DID model is consistent with the experimental results. However, Grady model is derived from the fact that the generalization of ductile materials is quite different from the experimental results.

     

  • loading
  • [1]
    WEI G, ZHANG W. Deformation and fracture behavior of steel projectiles impacting AD95 ceramic targets-experimental investigation [J]. Journal of Physics: Conference Series, 2014, 500(11): 112065. doi: 10.1088/1742-6596/500/11/112065
    [2]
    GILVARRY J J, BERGSTROM B H. Fracture of brittle solids. III. experimental results on the distribution of fragment size in single fracture [J]. Journal of Applied Physics, 1962, 33(11): 3211–3213. doi: 10.1063/1.1931139
    [3]
    WANG Z, LI P. Dynamic failure and fracture mechanism in alumina ceramics: experimental observations and finite element modelling [J]. Ceramics International, 2015, 41(10): 12763–12772. doi: 10.1016/j.ceramint.2015.06.110
    [4]
    SELLAPPAN P, WANG E, SANTOS C J E, et al. Wave propagation through alumina-porous alumina laminates [J]. Journal of the European Ceramic Society, 2015, 35(1): 197–210. doi: 10.1016/j.jeurceramsoc.2014.08.013
    [5]
    DENG H, NEMAT-NASSER S. Dynamic damage evolution in brittle solids [J]. Mechanics of Materials, 1992, 14(2): 83–103. doi: 10.1016/0167-6636(92)90008-2
    [6]
    ACHARYA S, BYSAKH S, PARAMESWARAN V, et al. Deformation and failure of alumina under high strain rate compressive loading [J]. Ceramics International, 2015, 41(5): 6793–6801. doi: 10.1016/j.ceramint.2015.01.126
    [7]
    易洪昇, 徐松林, 单俊芳. 不同加载速度下脆性颗粒的破坏特征 [J]. 爆炸与冲击, 2017, 37(5): 913–922. doi: 10.11883/1001-1455(2017)05-0913-10

    YI H S, XU S L, SHAN J F. Failure characteristics of brittle particles at different loading speeds [J]. Explosion and Shock Waves, 2017, 37(5): 913–922. doi: 10.11883/1001-1455(2017)05-0913-10
    [8]
    GRADY D E, BENSON D A. Fragmentation of metal rings by electromagnetic loading [J]. Experimental Mechanics, 1983, 23(4): 393–400. doi: 10.1007/BF02330054
    [9]
    周风华, 王永刚. 影响冲击载荷下脆性材料碎片尺度的因素 [J]. 爆炸与冲击, 2008, 28(4): 298–303. doi: 10.3321/j.issn:1001-1455.2008.04.003

    ZHOU F H, WANG Y G. Factors affecting the size of brittle material fragments under impact loading [J]. Explosion and Shock Waves, 2008, 28(4): 298–303. doi: 10.3321/j.issn:1001-1455.2008.04.003
    [10]
    WANG H, RAMESH K T. Dynamic strength and fragmentation of hot-pressed silicon carbide under uniaxial compression [J]. Acta Materialia, 2004, 52(2): 355–367. doi: 10.1016/j.actamat.2003.09.036
    [11]
    段卓平, 关智勇. 冲击载荷下Al2O3抗弹陶瓷的力学性能实验研究 [J]. 高压物理学报, 2003, 17(1): 29–34. doi: 10.3969/j.issn.1000-5773.2003.01.005

    DUAN Z P, GUAN Z Y. Experimental study on mechanical properties of elastics ceramics under impact loading [J]. Chinese Journal of High Pressure Physics, 2003, 17(1): 29–34. doi: 10.3969/j.issn.1000-5773.2003.01.005
    [12]
    李英雷, 胡时胜, 李英华. AD95陶瓷材料的动态压缩测试研究 [J]. 爆炸与冲击, 2004, 24(3): 233–239. doi: 10.3321/j.issn:1001-1455.2004.03.007

    LI Y L, HU S S, LI Y H. Dynamic compression test of AD95 Ceramic materials [J]. Explosion and Shock Waves, 2004, 24(3): 233–239. doi: 10.3321/j.issn:1001-1455.2004.03.007
    [13]
    杨震琦, 庞宝君, 王立闻. JH-2模型及其在Al2O3陶瓷低速撞击数值模拟中的应用 [J]. 爆炸与冲击, 2010, 30(5): 463–471. doi: 10.11883/1001-1455(2010)05-0463-09

    YANG Z Q, PANG B J, WANG L W. JH-2 model and its application in low speed impact simulation of Al2O3 ceramics [J]. Explosion and Shock Waves, 2010, 30(5): 463–471. doi: 10.11883/1001-1455(2010)05-0463-09
    [14]
    王振, 张超, 王银茂. 飞机风挡无机玻璃在不同应变率下的力学行为 [J]. 爆炸与冲击, 2018, 38(2): 295–301. doi: 10.11883/bzycj-2016-0186

    WANG Z, ZHANG C, WANG Y M. Mechanical behavior of aircraft windshield inorganic glass under different strain rates [J]. Explosion and Shock Waves, 2018, 38(2): 295–301. doi: 10.11883/bzycj-2016-0186
    [15]
    罗诗裕, 邵明珠, 罗晓华. 正弦平方势与应变超晶格位错动力学 [J]. 中国科学: 物理学力学天文学, 2010(2): 207–212.

    LUO S Y, SHAO M Z, LUO X H. Sinusoidal squared potential and strain superlattice dislocation dynamics [J]. Chinese Science: Physics, Mechanics, Astronomy, 2010(2): 207–212.
    [16]
    GRADY D E, KIPP M E. Mechanisms of dynamic fragmentation: factors governing fragment size [J]. Mechanics of Materials, 1985, 4(3/4): 311–320.
    [17]
    GLENN L A, CHUDNOVSKY A. Strain-energy effects on dynamic fragmentation [J]. Journal of Applied Physics, 1986, 59(4): 1379–1380. doi: 10.1063/1.336532
    [18]
    ZHOU F, MOLINARI J F, RAMESH K T. Effects of material properties on the fragmentation of brittle materials [J]. International Journal of Fracture, 2006, 139(2): 169–196. doi: 10.1007/s10704-006-7135-9
    [19]
    DRUGAN W J. Dynamic fragmentation of brittle materials: analytical mechanics-based models [J]. Journal of the Mechanics and Physics of Solids, 2001, 49(6): 1181–1208. doi: 10.1016/S0022-5096(01)00002-3
    [20]
    程靳, 赵树山. 断裂力学[M]. 北京: 科学出版社, 2006: 152–163.

    CHENG J, ZHAO S S. Mechanics of fracture [M]. Beijing: Science Press, 2006: 152–163.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views(7727) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return