Volume 33 Issue 2
Apr 2019
Turn off MathJax
Article Contents
LEI Zhongqi, YAO Xiaohu, LONG Shuchang, CHANG Jianhu, WANG Haibo. Dynamic Compression Characteristics of Polystyrene Foam Materials[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024202. doi: 10.11858/gywlxb.20180655
Citation: LEI Zhongqi, YAO Xiaohu, LONG Shuchang, CHANG Jianhu, WANG Haibo. Dynamic Compression Characteristics of Polystyrene Foam Materials[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024202. doi: 10.11858/gywlxb.20180655

Dynamic Compression Characteristics of Polystyrene Foam Materials

doi: 10.11858/gywlxb.20180655
  • Received Date: 15 Oct 2018
  • Rev Recd Date: 12 Nov 2018
  • The quasi-static and dynamic compression tests of expanded polystyrene (EPS) foam material were carried out through a universal material tester and a drop-weight impact machine. The density and loading rate effects of the dynamic compression characteristics for the polystyrene foam material were discussed. By considering the density correlation, the empirical formula of dynamic constitutive relation under constant strain rate was modified based on the drop-weight test data. The constitutive model of EPS foam was established based on the material finite element models of MAT57, MAT163 in LS-DYNA, and Low Density Foam and Crushable Foam in ABAQUS. By simulating the impact process of drop-weight and comparing with the test results, it shows that MAT163 and Crushable Foam model can predict the dynamic response and energy absorption performance better. The results verify the reliability of the dynamic constitutive model. Meanwhile, it shows that these two specific material models have good applicability in simulating the impact problem of EPS foam.

     

  • loading
  • [1]
    OUELLET S, CRONIN D, WORSWICK M. Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions [J]. Polymer Testing, 2006, 25(6): 731–743. doi: 10.1016/j.polymertesting.2006.05.005
    [2]
    CRONIN D S, OUELLET S. Low density polyethylene, expanded polystyrene and expanded polypropylene: strain rate and size effects on mechanical properties [J]. Polymer Testing, 2016, 53: 40–50. doi: 10.1016/j.polymertesting.2016.04.018
    [3]
    HORVATH J S. Expanded polystyrene (EPS) geofoam: an introduction to material behavior [J]. Geotextiles and Geomembranes, 1994, 13(4): 263–280. doi: 10.1016/0266-1144(94)90048-5
    [4]
    GIBSON L, ASHBY M. Cellular solids: structure and properties [M]. Cambridge: Cambridge University Press, 1997.
    [5]
    SAINT-MICHEL F, CHAZEAU L, CAVAILLÉ J Y, et al. Mechanical properties of high density polyurethane foams: I. effect of the density [J]. Composites Science and Technology, 2006, 66(15): 2700–2708. doi: 10.1016/j.compscitech.2006.03.009
    [6]
    CHEN W, HAO H, HUGHES D, et al. Static and dynamic mechanical properties of expanded polystyrene [J]. Materials & Design, 2015, 69: 170–180.
    [7]
    王志亮, 诸斌. EPS泡沫冲击压缩和吸能特性试验研究 [J]. 建筑材料学报, 2013, 16(4): 630–636 doi: 10.3969/j.issn.1007-9629.2013.04.014

    WANG Z L, ZHU B. Experimental study on impact compression and energy-absorbing property of expanded polystyrene foam [J]. Journal of Building Materials, 2013, 16(4): 630–636 doi: 10.3969/j.issn.1007-9629.2013.04.014
    [8]
    LING C, IVENS J, CARDIFF P, et al. Deformation response of EPS foam under combined compression-shear loading. Part I: experimental design and quasi-static tests [J]. International Journal of Mechanical Sciences, 2018, 144: 480–489. doi: 10.1016/j.ijmecsci.2018.06.014
    [9]
    LING C, IVENS J, CARDIFF P, et al. Deformation response of EPS foam under combined compression-shear loading. Part II: high strain rate dynamic tests [J]. International Journal of Mechanical Sciences, 2018, 145: 9–23. doi: 10.1016/j.ijmecsci.2018.06.015
    [10]
    LING C, CARDIFF P, GILCHRIST M D. Mechanical behaviour of EPS foam under combined compression-shear loading [J]. Materials Today Communications, 2018, 16: 339–352. doi: 10.1016/j.mtcomm.2018.07.001
    [11]
    SHAH Q H, TOPA A. Modeling large deformation and failure of expanded polystyrene crushable foam using LS-DYNA [J]. Modelling and Simulation in Engineering, 2014: 1.
    [12]
    OZTURK U E, ANLAS G. Finite element analysis of expanded polystyrene foam under multiple compressive loading and unloading [J]. Materials & Design, 2011, 32(2): 773–780.
    [13]
    姚小虎, 任会兰, 林荣, 等. 聚合物泡沫材料动态力学性能及其能量吸收研究 [J]. 高压物理学报, 2012, 26(5): 531–536

    YAO X H, REN H L, LIN R, et al. Study on dynamic mechanical properties and energy absorption of polymeric foams [J]. Chinese Journal of High Pressure Physics, 2012, 26(5): 531–536
    [14]
    郭伟国, 李玉龙, 索涛. 应力波基础简明教程 [M]. 西安: 西北工业大学出版社, 2007: 120–154.
    [15]
    NAGY A, KO W L, LINDHOLM U S. Mechanical behavior of foamed materials under dynamic compression [J]. Journal of Cellular Plastics, 1974, 10(3): 127–134. doi: 10.1177/0021955X7401000306
    [16]
    ZHANG J, KIKUCHI N, LI V, et al. Constitutive modeling of polymeric foam material subjected to dynamic crash loading [J]. International Journal of Impact Engineering, 1998, 21(5): 369–386. doi: 10.1016/S0734-743X(97)00087-0
    [17]
    ABAQUS analysis user’s manual version 2017 [M]. ABAQUS Inc., 2017.
    [18]
    OZTURK U E. Mechanical behavior of low density polymeric foams under multiple loading and unloading [D]. Turkey: Bogazici University, 2008.
    [19]
    LS-DYNA theory manual version Vol. R7.1 [M]. Livermore: Livermore Software Technology, 2006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(6)

    Article Metrics

    Article views(7541) PDF downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return