Volume 33 Issue 2
Apr 2019
Turn off MathJax
Article Contents
MIAO Changqing, XU Huadong, JIN Guanghan, SUN Tiantian, ZU Zhennan. Experimental Study of Hypervelocity Impact Characteristics for Fiber Fabric Materials[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024203. doi: 10.11858/gywlxb.20180654
Citation: MIAO Changqing, XU Huadong, JIN Guanghan, SUN Tiantian, ZU Zhennan. Experimental Study of Hypervelocity Impact Characteristics for Fiber Fabric Materials[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024203. doi: 10.11858/gywlxb.20180654

Experimental Study of Hypervelocity Impact Characteristics for Fiber Fabric Materials

doi: 10.11858/gywlxb.20180654
  • Received Date: 15 Oct 2018
  • Rev Recd Date: 12 Nov 2018
  • Compared with aluminum alloy and other materials, fiber fabric materials have the advantages of light weight, flexible folding, etc. The fiber fabric material can be applied to the flexible inflatable protection structure deployment, thereby constructing a multilayer, large-spacing protection structure is necessary to improve the protection efficiency. Considering the protective performance of multilayer shields for different fiber fabric materials, the protective performance of multilayer shields with different materials on space debris impact was studied experimentally. The protective shields materials include basalt fiber fabric material, aramid fiber fabric material and aluminum plate. Compared with the multilayer aluminum plate shields, the multilayer fiber fabric material shields have higher anti-fragment impact effects under the impact of hypervelocity projectile. For the multilayer fiber fabric material shields, the protection effects is improved when the initial two shields are basalt fiber fabric material. The results show that the front parts of the multilayer shields adopting inorganic material with high softening point temperature may improve the break of projectile, thereby improve the impact protection performance for the protective structure.

     

  • loading
  • [1]
    CHRISTIANSEN E L. Meteoroid/debris shielding [M]. Houston: National Aeronautics and Space Administration, 2003.
    [2]
    郑世贵, 闫军. 空间碎片防护需求与防护材料进展 [J]. 国际太空, 2014(6): 49–53

    ZHENG S G, YAN J. Progress in space debris protection requirements and protective materials [J]. Space International, 2014(6): 49–53
    [3]
    韩增尧, 庞宝君. 空间碎片防护研究最新进展 [J]. 航天器环境工程, 2012, 29(4): 369–378

    HAN Z Y, PANG B J. Review of recent development of space debris protection research [J]. Spacecraft Environment Engineering, 2012, 29(4): 369–378
    [4]
    CHRISTIANSEN E L, NAGY K, LEAR D M, et al. Space station MMOD shielding [J]. Acta Astronautica, 2009, 65(7/8): 921–929.
    [5]
    WEN X, HUANG J, LI Y, et al. Preliminary study on shielding performance of wood stuffed shield [J]. International Journal of Impact Engineering, 2016, 91: 94–101. doi: 10.1016/j.ijimpeng.2015.12.006
    [6]
    SCHONBERG W P, WILLIAMSEN J E. Calculating hole size and crack length in multi-wall systems following an orbital debris impact [J]. International Journal of Impact Engineering, 2017, 109: 335–341. doi: 10.1016/j.ijimpeng.2017.07.015
    [7]
    RYAN S, CHRISTIANSEN E L. Hypervelocity impact testing of advanced materials and structures for micrometeoroid and orbital debris shielding [J]. Acta Astronautica, 2013, 83: 216–231. doi: 10.1016/j.actaastro.2012.09.012
    [8]
    VERMA P N, DHOTE K D. Characterising primary fragment in debris cloud formed by hypervelocity impact of spherical stainless steel projectile on thin steel plate [J]. International Journal of Impact Engineering, 2018, 120: 118–125. doi: 10.1016/j.ijimpeng.2018.05.003
    [9]
    CHANGQING M, BO L. Experimental study on the behavior of a new multilayer shield against hypervelocity debris impact [J]. Polymers & Polymer Composites, 2014, 22(2): 99.
    [10]
    KE F, HUANG J, WEN X, et al. Test study on the performance of shielding configuration with stuffed layer under hypervelocity impact [J]. Acta Astronautica, 2016, 127: 553–560. doi: 10.1016/j.actaastro.2016.06.037
    [11]
    苗常青, 谭惠丰, 曹昱, 等. 在轨充气展开并刚化的抗空间碎片和微流星体的防护系统: CN101353087 [P]. 2009-01-28.

    MIAO C Q, TAN H F, CAO Y, et al. A protective system against space debris and micrometeoroids that is inflated and rigid in orbit: CN101353087 [P]. 2009-01-28.
    [12]
    苗常青, 曹昱, 王友善, 等. 多层空腔式充气展开防护机构: CN101367440 [P]. 2009-02-18.

    MIAO C Q, CAO Y, WANG Y S, et al. Multi-layer cavity type inflation expansion protection structure: CN101367440 [P]. 2009-02-18.
    [13]
    马晓青, 韩峰. 高速碰撞动力学 [M]. 北京:国防工业出版社, 1998.
    [14]
    张庆明, 黄风雷. 超高速碰撞动力学引论 [M]. 北京: 科学出版社, 2000.
    [15]
    CHRISTIANSEN E L, KERR J H, DE LA FUENTE H M, et al. Flexible and deployable meteoroid/debris shielding for spacecraft [J]. International Journal of Impact Engineering, 1999, 23(1): 125–136. doi: 10.1016/S0734-743X(99)00068-8
    [16]
    RUDOLPH M, SCHÄFER F, DESTEFANIS R, et al. Fragmentation of hypervelocity aluminum projectiles on fabrics [J]. Acta Astronautica, 2012, 76: 42–50. doi: 10.1016/j.actaastro.2012.02.002
    [17]
    管公顺, 蒲东东, 哈跃, 等. 不同环境温度下铝球弹丸高速撞击编织物防护屏试验研究 [J]. 机械工程学报, 2015, 51(3): 66–72

    GUAN G S, PU D D, HA Y, et al. Experimental investigation of woven bumper shield impacted by a high-velocity aluminum sphere at different ambient temperature [J]. Journal of Mechanical Engineering, 2015, 51(3): 66–72
    [18]
    管公顺, 李航杰, 刘家赫, 等. 非金属弹丸高速撞击编织物填充式结构的损伤 [J]. 材料研究学报, 2016, 30(5): 329–335

    GUAN G S, LI H J, LIU J H, et al. Investigation into damage of woven stuffed shield impacted by high-velocity nonmetallic projectile [J]. Chinese Journal of Materials Research, 2016, 30(5): 329–335
    [19]
    苗常青, 杜明俊, 黄磊, 等. 空间碎片柔性防护结构超高速撞击试验研究 [J]. 载人航天, 2017, 23(2): 173–176 doi: 10.3969/j.issn.1674-5825.2017.02.006

    MIAO C Q, DU M J, HUANG L, et al. Experimental research on hypervelocity impact characteristics of flexible anti-debris multi-shields structure [J]. Manned Spaceflight, 2017, 23(2): 173–176 doi: 10.3969/j.issn.1674-5825.2017.02.006
    [20]
    哈跃, 刘志勇, 管公顺, 等. 玄武岩纤维布超高速撞击损伤分析 [J]. 高压物理学报, 2012, 26(5): 557–563 doi: 10.11858/gywlxb.2012.05.012

    HA Y, LIU Z Y, GUAN G S, et al. Damage investigation of hypervelocity impact on woven fabric of basalt fiber [J]. Chinese Journai of High Pressure Physics, 2012, 26(5): 557–563 doi: 10.11858/gywlxb.2012.05.012
    [21]
    林慧国. 中外铝合金牌号对照速查手册 [M]. 北京:机械工业出版社, 2007.
    [22]
    唐恩凌, 徐名扬, 张庆明, 等. 超高速撞击厚靶过程的能量分配研究 [J]. 固体力学学报, 2016, 37(2): 152–160

    TANG E L, XU M Y, ZHANG Q M, et al. Study on partitioning of energy in hypervelocity impact on thick target [J]. Chinese Journal of Solid Mechanics, 2016, 37(2): 152–160
    [23]
    张品亮, 龚自正, 曹燕, 等. 超高速撞击下47Zr45Ti5Al3V合金的宏观与微观响应行为 [J]. 高压物理学报, 2017, 31(3): 231–238 doi: 10.11858/gywlxb.2017.03.004

    ZHANG P L, GONG Z Z, CAO Y, et al. Macro- and micro-damage behaviors of 47Zr45Ti5Al3V alloy in hypervelocity impact [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 231–238 doi: 10.11858/gywlxb.2017.03.004
    [24]
    经福谦. 实验物态方程导引 [M]. 北京: 科学出版社, 1999.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views(8199) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return