Volume 33 Issue 1
Jan 2019
Turn off MathJax
Article Contents
LI Xin, MA Xuejiao, GAO Wenquan, LIU Yanhui. Evolution of Crystal Structures and Electronic Properties for Ir2P under High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 011103. doi: 10.11858/gywlxb.20180645
Citation: LI Xin, MA Xuejiao, GAO Wenquan, LIU Yanhui. Evolution of Crystal Structures and Electronic Properties for Ir2P under High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 011103. doi: 10.11858/gywlxb.20180645

Evolution of Crystal Structures and Electronic Properties for Ir2P under High Pressure

doi: 10.11858/gywlxb.20180645
  • Received Date: 06 Oct 2018
  • Rev Recd Date: 01 Nov 2018
  • The crystals of Ir2P were predicted under the pressure ranging from 0 to 100 GPa using the CALYPSO structure exploration technique with the first-principles method based on the density functional theory. The predicted physical properties and crystal structures were examined in detail. At ambient pressure, the predicted α-Ir2P phase was found to have a cubic structure with Fm3m space group, which is consistent with the experimental structure. The pressure-induced structural transformations were unraveled, from the α-Ir2P phase to the β-Ir2P phase at 86.4 GPa. The predicted β-Ir2P phase has I4/mmm space group. In the process of phase transition, the volume of the crystal collapses and a discontinuous first order phase transition occurred. The calculation of the electronic properties showed that the predicted conduction bands and the valence bands of the β-Ir2P phase overlap near the Fermi surface at 86.4 GPa, indicating that the structure of the β-Ir2P phase has metallic properties. The electron localization function revealed that the β-Ir2P phase has a polar covalent bond, a metallic bond and an ionic bond. The Bader charge transfer calculations showed that each P atom transfers 0.19e to Ir atom, mainly due to the strong electronegativity of the Ir atoms.

     

  • loading
  • [1]
    HENKES A E, VASQUEZ Y, SCHAAK R E. Converting metals into phosphides: a general strategy for the synthesis of metal phosphide nanocrystals [J]. Journal of the American Chemical Society, 2007, 129(7): 1896–1897. doi: 10.1021/ja068502l
    [2]
    MAUVERNAY B, DOUBLET M L, MONCONDUIT L. Redox mechanism in the binary transition metal phosphide Cu3P [J]. Journal of Physics and Chemistry of Solids, 2006, 67(5/6): 1252–1257.
    [3]
    BROCK S L, SENEVIRATHNE K. Recent developments in synthetic approaches to transition metal phosphide nanoparticles for magnetic and catalytic applications [J]. Journal of Solid State Chemistry, 2008, 181(7): 1552–1559. doi: 10.1016/j.jssc.2008.03.012
    [4]
    OYAMA S T, GOTT T, ZHAO H, et al. Transition metal phosphide hydroprocessing catalysts: a review [J]. Catalysis Today, 2009, 143(1/2): 94–107.
    [5]
    HALL J W, MEMBRENO N, WU J, et al. Low-temperature synthesis of amorphous FeP2 and its use as anodes for Li ion batteries [J]. Journal of the American Chemical Society, 2012, 134(12): 5532–5535. doi: 10.1021/ja301173q
    [6]
    BILTZ W, WEIBKE F, MAY E, et al. Alloyability of platinum and phosphorus [J]. Zeitschrift fur Anorganische und Allgemeine Chemie, 1935, 223(2): 129–143. doi: 10.1002/zaac.v223:2
    [7]
    ZHANG X, QIN J, SUN X, et al. First-principles structural design of superhard material of ZrB4 [J]. Physical Chemistry Chemical Physics, 2013, 15(48): 20894–20899. doi: 10.1039/c3cp53893a
    [8]
    KANER R B, GILMAN J J, TOLBERT S H. Designing superhard materials [J]. Science, 2005, 308(5726): 1268–1269. doi: 10.1126/science.1109830
    [9]
    SHI Y, ZHANG B. Correction: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction [J]. Chemical Society Reviews, 2016, 45(6): 1781–1781. doi: 10.1039/C6CS90013E
    [10]
    CARENCO S, PORTEHAULT D, BOISSIERE C, et al. Nanoscaled metal borides and phosphides: recent developments and perspectives [J]. Chemical Reviews, 2013, 113(10): 7981–8065. doi: 10.1021/cr400020d
    [11]
    LI W, DHANDAPANI B, OYAMA S T. Molybdenum phosphide: a novel catalyst for hydrodenitrogenation [J]. Chemistry Letters, 1998, 27(3): 207–208. doi: 10.1246/cl.1998.207
    [12]
    OYAMA S T, GOTT T, ZHAO H, et al. Transition metal phosphide hydroprocessing catalysts: a review [J]. Catalysis Today, 2009, 143(1/2): 94–107.
    [13]
    ZUMBUSCH M. Über die strukturen des uransubsulfids und der subphosphide des iridiums und rhodiums [J]. Zeitschrift für Anorganische und Allgemeine Chemie, 1940, 243(4): 322–329. doi: 10.1002/zaac.19402430403
    [14]
    RUNDQVIST S. Phosphides of the platinum metals [J]. Nature, 1960, 185(4705): 31. doi: 10.1038/185031a0
    [15]
    RAUB C J, ZACHARIASEN W H, GEBALLE T H, et al. Superconductivity of some new Pt-metal compounds [J]. Journal of Physics and Chemistry of Solids, 1963, 24(9): 1093–1100. doi: 10.1016/0022-3697(63)90022-2
    [16]
    WANG P, WANG Y, WANG L, et al. Elastic, magnetic and electronic properties of iridium phosphide Ir2P [J]. Scientific Reports, 2016, 6(9): 21787.
    [17]
    SUN X W, BIOUD N, FU Z J, et al. High-pressure elastic properties of cubic Ir2P from ab initio calculations [J]. Physics Letters A, 2016, 380(43): 3672–3677. doi: 10.1016/j.physleta.2016.08.048
    [18]
    LIU Z J, SONG T, SUN X W, et al. Thermal expansion, heat capacity and Grüneisen parameter of iridium phosphide Ir2P from quasi-harmonic Debye model [J]. Solid State Communications, 2017, 253: 19–23. doi: 10.1016/j.ssc.2017.01.028
    [19]
    WANG Y, LV J, ZHU L, et al. Crystal structure prediction via particle-swarm optimization [J]. Physical Review B, 2010, 82(9): 094116. doi: 10.1103/PhysRevB.82.094116
    [20]
    MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188. doi: 10.1103/PhysRevB.13.5188
    [21]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [22]
    BORN M, HUANG K. Dynamical theory of crystal lattices [J]. American Journal of Physics, 1954, 39(2): 113–127.
    [23]
    SAVIN A, NESPER R, WENGERT S, et al. ELF: the electron localization function [J]. Angewandte Chemie International Edition in English, 1997, 36(17): 1808–1832. doi: 10.1002/(ISSN)1521-3773
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views(7261) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return