Volume 33 Issue 1
Jan 2019
Turn off MathJax
Article Contents
CHEN Xingwang, WANG Jinxiang, TANG Kui, CHEN Riming, ZHOU Lian, HAO Chunjie. Experimental and Numerical Study of Shock Initiation of Covered TNT by Near-Field Shock Wave[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 015101. doi: 10.11858/gywlxb.20180604
Citation: CHEN Xingwang, WANG Jinxiang, TANG Kui, CHEN Riming, ZHOU Lian, HAO Chunjie. Experimental and Numerical Study of Shock Initiation of Covered TNT by Near-Field Shock Wave[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 015101. doi: 10.11858/gywlxb.20180604

Experimental and Numerical Study of Shock Initiation of Covered TNT by Near-Field Shock Wave

doi: 10.11858/gywlxb.20180604
  • Received Date: 23 Jul 2018
  • Rev Recd Date: 23 Aug 2018
  • In this study we analyzed the shock initiation process of covered TNT using experiments and LS-DYNA3D to study the damage effect of the near-field strong shock wave on the covered charge. We obtained the critical thickness of the covered plate for detonating TNT during contact explosion and the sympathetic detonation distance of the covered TNT during non-contact explosion and the relation between the covered plate thickness and the distance of the explosion using the non-linear least square method. The results show that the numerical simulation results accord well with the experimental results. The sympathetic detonation distance of the covered-pressed TNT in non-contact explosion ranges from 12-15 mm when the thickness of the 45 steel covered plate is 3 mm. The critical thickness of the covered plate is between 20 and 23 mm for the pressed TNT ignited by contact explosion. The sympathetic detonation distance of the non-contact explosion decreases as the covered plate thickness increases. Without a covered plate, the sympathetic detonation distance is 79 mm. When the thickness of the covered plate increases from 1 mm to 5 mm, the sympathetic detonation distance reduces from 51 mm to 1.5 mm. The thickness of the covered plate is of great importance for the protection against shock waves.

     

  • loading
  • [1]
    徐松林, 阳世清, 李玉龙. 弹药与爆炸品的安全标准体系 [J]. 安全与环境工程, 2012, 19(5): 85–89 doi: 10.3969/j.issn.1671-1556.2012.05.021

    XU S L, YANG S Q, LI Y L. Safety standard system of ammunitions and explosives [J]. Safety and Environmental Engineering, 2012, 19(5): 85–89 doi: 10.3969/j.issn.1671-1556.2012.05.021
    [2]
    ROSENBERG Z, DEKEL E. Terminal ballistics [M]. Berlin: Springer, 2012.
    [3]
    陈卫东, 张忠, 刘家良. 破片对屏蔽炸药冲击起爆的数值模拟和分析 [J]. 兵工学报, 2009, 30(9): 1187–1191 doi: 10.3321/j.issn:1000-1093.2009.09.007

    CHEN W D, ZHANG Z, LIU J L. Numerical simulation and analysis of shock initiation of shielded explosive impacted by fragments [J]. Acta Armamentarii, 2009, 30(9): 1187–1191 doi: 10.3321/j.issn:1000-1093.2009.09.007
    [4]
    童宗保, 王金相, 彭楚才, 等. 预制破片对屏蔽炸药冲击引爆研究 [J]. 科学技术与工程, 2014, 14(7): 173–177 doi: 10.3969/j.issn.1671-1815.2014.07.038

    TONG Z B, WANG J X, PENG C C, et al. Study on the initiation of shielded explosive impacted by prefabricated fragment [J]. Science Technology and Engineering, 2014, 14(7): 173–177 doi: 10.3969/j.issn.1671-1815.2014.07.038
    [5]
    杨正才, 廖昕, 李晓刚, 等. 某隔板起爆器冲击起爆过程的数值模拟与实验研究 [J]. 含能材料, 2011, 19(2): 221–225 doi: 10.3969/j.issn.1006-9941.2011.02.022

    YANG Z C, LIAO X, LI X G, et al. Numerical simulation and experimental investigation for shock initiation of bulkhead initiator [J]. Chinese Journal of Energetic Materials, 2011, 19(2): 221–225 doi: 10.3969/j.issn.1006-9941.2011.02.022
    [6]
    周杰, 何勇, 何源, 等. 含能毁伤元冲击引爆模拟战斗部试验研究 [J]. 含能材料, 2016, 24(11): 1048–1056 doi: 10.11943/j.issn.1006-9941.2016.11.003

    ZHOU J, HE Y, HE Y, et al. Experimental study on shock initiation of simulative warhead by energetic kill element [J]. Chinese Journal of Energetic Materials, 2016, 24(11): 1048–1056 doi: 10.11943/j.issn.1006-9941.2016.11.003
    [7]
    WALKER F E, WASLEY R J. Critical energy shock initiation of heteropterous explosive [C]//Explosive Pyrotechnics, 1968.
    [8]
    LU J P, LI J, KENNEDY D L. Simulation of sympathetic reaction rests for PBXN-109 [C]//Proceedings of 13th Symposium (International) on Detonation. New York, USA, 2006: 1338–1349.
    [9]
    王晨, 伍俊英, 陈朗, 等. 壳装炸药殉爆实验和数值模拟 [J]. 爆炸与冲击, 2010, 30(2): 152–158 doi: 10.11883/1001-1455(2010)02-0152-07

    WANG C, WU J Y, CHEN L, et al. Experiments and numerical simulations of sympathetic detonation of explosives in shell [J]. Explosion and Shock Waves, 2010, 30(2): 152–158 doi: 10.11883/1001-1455(2010)02-0152-07
    [10]
    时党勇, 李裕春, 张胜民. 基于ANSYS/LS-DYNA8.1进行显示动力分析 [M]. 北京: 清华大学出版社, 2005.
    [11]
    陈刚, 陈忠富, 陶俊林, 等. 45钢的Johnson-Cook失效模型 [C]//中国力学学会学术大会, 2005.
    [12]
    张磊. Q235钢拉伸性能的有限元仿真与试验 [D]. 长春: 吉林大学, 2012.
    [13]
    蒋国平. 非均质凝聚炸药二维冲击起爆实验与Lagrange分析研究 [D]. 长沙: 湖南大学, 2005.
    [14]
    北京工业学院八系. 爆炸及其作用(上) [M]. 北京: 国防工业出版社, 1982.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views(7014) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return