Volume 33 Issue 1
Jan 2019
Turn off MathJax
Article Contents
WANG Bolong, LI Mingzhe, LIU Zhiwei, HAN Xin. A Novel Tangential Split-Belt Ultrahigh Pressure Apparatus[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 013102. doi: 10.11858/gywlxb.20180595
Citation: WANG Bolong, LI Mingzhe, LIU Zhiwei, HAN Xin. A Novel Tangential Split-Belt Ultrahigh Pressure Apparatus[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 013102. doi: 10.11858/gywlxb.20180595

A Novel Tangential Split-Belt Ultrahigh Pressure Apparatus

doi: 10.11858/gywlxb.20180595
  • Received Date: 11 Jul 2018
  • Rev Recd Date: 12 Aug 2018
  • A novel tangential split apparatus was designed to improve the pressure bearing capacity of the ultra-high pressure die. The tangential block structure can not only eliminate the circumferential tensile stress of the inner wall of the cylinder through mutual friction and extrusion on the split surface, but also generate a large circumferential compressive stress on the inner wall. This pressed state is very advantageous for the cemented carbide material and can significantly increase the ultimate pressure capacity of the cylinder. The numerical simulation results show that under the same load conditions, the equivalent stress of the segmented cylinder is significantly less than that of the belt cylinder. The three principal stresses on the inner wall of the block cylinder are compressive stress, and the difference is small. These stresses are close to the isostatic pressure state, so the cylinder can withstand higher sample chamber pressure. The comparative experimental results also prove that the tangential split-belt ultrahigh pressure apparatus has higher ultimate load carrying capacity.

     

  • loading
  • [1]
    BASSETT W A. Diamond anvil cell, 50th birthday [J]. High Pressure Research, 2009, 29(2): 163–186. doi: 10.1080/08957950802597239
    [2]
    BUNDY F P, HALL H T, STRONG H M, et al. Man-made diamonds [J]. Nature, 1955, 176(4471): 51–55. doi: 10.1038/176051a0
    [3]
    HALL H T. Ultra-high-pressure, high-temperature apparatus: the "Belt" [J]. Review of Scientific Instruments, 1960, 31(2): 125–131. doi: 10.1063/1.1716907
    [4]
    KHVOSTANTSEV L G, VERESHCHAGIN L F, NOVIKOV A P. Device of toroid type for high pressure generation [J]. High Temperatures High Pressures, 1977, 9(3): 637–640.
    [5]
    胡静竹, 唐汝明, 徐济安. 金刚石压砧高压装置及I2和S高压相变的观察 [J]. 物理学报, 1980, 29(10): 1351–1354 doi: 10.7498/aps.29.1351

    HU J Z, TANG R M, XU J A. The high pressure device of diamond anvil and the observation of phase transition of iodine and sulphur [J]. Acta Physica Sinica, 1980, 29(10): 1351–1354 doi: 10.7498/aps.29.1351
    [6]
    韩奇钢, 马红安, 肖宏宇, 等. 基于有限元法分析宝石级金刚石的合成腔体温度场 [J]. 物理学报, 2010, 59(3): 1923–1927

    HAN Q G, MA H A, XIAO H Y, et al. Finite element method study on the temperature distribution in the cell of large single crystal diamond [J]. Acta Physica Sinica, 2010, 59(3): 1923–1927
    [7]
    KAWAI N, ENDO S. The generation of ultrahigh hydrostatic pressures by a split sphere apparatus [J]. Review of Scientific Instruments, 1970, 41(8): 1178–1181. doi: 10.1063/1.1684753
    [8]
    吕世杰, 罗建太, 苏磊, 等. 滑块式六含八超高压实验装置及其压力温度标定 [J]. 物理学报, 2009, 58(10): 6852–6857 doi: 10.3321/j.issn:1000-3290.2009.10.031

    LÜ S J, LUO J T, SU L, et al. A slide-type multianvil ultrahigh pressure apparatus and calibrations of its pressure and temperature [J]. Acta Physica Sinica, 2009, 58(10): 6852–6857 doi: 10.3321/j.issn:1000-3290.2009.10.031
    [9]
    BUNDY F P. Pressure-temperature phase diagram of iron to 200 kbar, 900 ℃ [J]. Journal of Applied Physics, 1965, 36(2): 616–620. doi: 10.1063/1.1714038
    [10]
    LEGER J M, LORIERS-SUSSE C, VODAR B. Pressure effect on the Curie temperatures of transition metals and alloys [J]. Physical Review B, 1972, 6(11): 4250–4261. doi: 10.1103/PhysRevB.6.4250
    [11]
    肖宏宇, 李尚升, 秦玉琨, 等. 高温高压下掺硼宝石级金刚石单晶生长特性的研究 [J]. 物理学报, 2014, 63(19): 198101 doi: 10.7498/aps.63.198101

    XIAO H Y, LI S S, QIN Y K, et al. Studies on synthesis of boron-doped Gem-diamond single crystals under high temperature and high pressure [J]. Acta Physica Sinica, 2014, 63(19): 198101 doi: 10.7498/aps.63.198101
    [12]
    王海阔, 贺端威, 许超, 等. 基于国产铰链式六面顶压机的大腔体静高压技术研究进展 [J]. 高压物理学报, 2013, 27(5): 633–661 doi: 10.11858/gywlxb.2013.05.001

    WANG H K, HE D W, XU C, et al. Development of large volume-high static pressure techniques based on the hinge-type cubic presses [J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 633–661 doi: 10.11858/gywlxb.2013.05.001
    [13]
    LIU Z, LI M, YANG Y, et al. Study on pressure capacity of multilayer stagger-split die, using simulation-based optimization [J]. High Pressure Research, 2013, 33(4): 787–794. doi: 10.1080/08957959.2013.825793
    [14]
    KLÜNSNER T, WURSTER S, SUPANCIC P, et al. Effect of specimen size on the tensile strength of WC–Co hard metal [J]. Acta Materialia, 2011, 59(10): 4244–4252. doi: 10.1016/j.actamat.2011.03.049
    [15]
    GETTING I C, CHEN G, BROWN J A. The strength and rheology of commercial tungsten carbide cermets used in high-pressure apparatus [J]. Pure and Applied Geophysics, 1993, 141(2): 545–577.
    [16]
    WANG B, LI M, YANG Y, et al. Note: double-beveled multilayer stagger-split die for a large volume high-pressure apparatus [J]. Review of Scientific Instruments, 2015, 86(8): 086106. doi: 10.1063/1.4929712
    [17]
    VRBKA J, KNESL Z. Proceedings of high pressure geoscience and material synthesis [C]. Berlin: Akademie-Verlag, 1988: 234.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views(6784) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return