Volume 33 Issue 1
Jan 2019
Turn off MathJax
Article Contents
LIU Sunli, BAI Bin, HE Hongliang, CHU Jian, SUN Yaping, WANG Xu, WANG Honglong, ZHANG Ming. A Comparative Study on Influence of High-Pressure Shocking and Radiation Damage on Titanite[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 011101. doi: 10.11858/gywlxb.20180546
Citation: LIU Sunli, BAI Bin, HE Hongliang, CHU Jian, SUN Yaping, WANG Xu, WANG Honglong, ZHANG Ming. A Comparative Study on Influence of High-Pressure Shocking and Radiation Damage on Titanite[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 011101. doi: 10.11858/gywlxb.20180546

A Comparative Study on Influence of High-Pressure Shocking and Radiation Damage on Titanite

doi: 10.11858/gywlxb.20180546
  • Received Date: 24 Apr 2018
  • Rev Recd Date: 30 May 2018
  • High pressure shock and α-decay radiation are two extreme conditions capable of leading to damages on crystal lattices of solid materials. The present work investigated the influence of shocking on the structural variations of titanite (CaTiSiO5) using a gas gun shock-wave technology. The results were used to compare the similarities and differences in spectral and structural changes between shocked and α-decay radiation damaged titanite, as α-decay radiation process was considered as involved in a fast high pressure process. The results showed that high pressure shock and α-decay radiation can both produce defective crystal lattice and even amorphous phases in titanite, resulting in a decrease in band intensity, a line boarding and a loss of spectral details in X-ray diffraction patterns, infrared and Raman spectra. However, there are distinct differences in the detailed processes and damage mechanisms between the two processes. High-pressure shock causes the main peak of the Ti-O stretching vibration in titanite shifts to a lower frequency, which is opposite to its behaviour in radiation damaged samples. Furthermore, shocking leads to a reduction of unit cell parameters a, b, c and cell volume V, quite contrary to a unit-cell swelling caused by radiation damage.

     

  • loading
  • [1]
    GASCOYNE M. Evidence for the stability of the potential nuclear waste host, sphene, over geological time, from uranium-lead ages and uranium-series measurements [J]. Applied Geochemistry, 1986, 1(2): 199–210. doi: 10.1016/0883-2927(86)90004-1
    [2]
    HAWTHORNE F C, GROAT L A, RAUDSEPP M, et al. Alpha-decay damage in titanite [J]. American Mineralogist, 1991, 76(3/4): 370–396.
    [3]
    STOREY C D, JEFFRIES T E, SMITH M. Common lead-corrected laser ablation ICP-MS U-Pb systematics and geochronology of titanite [J]. Chemical Geology, 2006, 227(1/2): 37–52.
    [4]
    向华, 张利, 钟增球, 等. 榍石: U-Pb定年及变质P-T-t轨迹的建立 [J]. 地球科学进展, 2007, 22(12): 1258–1267 doi: 10.3321/j.issn:1001-8166.2007.12.006

    XIANG H, ZHANG L, ZHONG Z Q, et al. Titanite: U-Pb dating and applications on defining P-T-t path of metamorphic rocks [J]. Advances in Earth Science, 2007, 22(12): 1258–1267 doi: 10.3321/j.issn:1001-8166.2007.12.006
    [5]
    SPEER J A, GIBBS G V. The crystal structure of synthetic titanite, CaTiOSiO4, and the domain textures of natural titanites [J]. American Mineralogist, 1976, 61(3/4): 238–247.
    [6]
    GHOSE S, ITO Y, HATCH D M. Paraelectric-antiferroelectric phase transition in titanite, CaTiSiO5 [J]. Physics and Chemistry of Minerals, 1991, 17(7): 591–603.
    [7]
    TAYLOR M, BROWN G E. High-temperature structural study of the P21/aA2/a phase transition in synthetic titanite, CaTiSiO5 [J]. American Mineralogist, 1976, 61(5/6): 435–447.
    [8]
    KUNZ M, XIROUCHAKIS D, LINDSLEY D H, et al. High-pressure phase transition in titanite (CaTiOSiO4) [J]. American Mineralogist, 1996, 81(11/12): 1527–1530.
    [9]
    ANGEL R J, KUNZ M, MILETICH R, et al. High-pressure phase transition in CaTiOSiO4 titanite [J]. Phase Transitions: A Multinational Journal, 1999, 68(3): 533–543. doi: 10.1080/01411599908224532
    [10]
    KUNZ M, ARLT T, STOLZ J. In situ powder diffraction study of titanite (CaTiOSiO4) at high pressure and high temperature [J]. American Mineralogist, 2000, 85(10): 1465–1473. doi: 10.2138/am-2000-1016
    [11]
    RATH S, KUNZ M, MILETICH R. Phase transition mechanisms in the mineral titanite CaTiOSiO4 under high pressure—a X-ray single crystal study between 7 GPa and 10 GPa [C]//AGU Fall Meeting Abstracts. American Geophysical Union, 2001.
    [12]
    祝向平, 秦善, 刘景, 等. 榍石的高压结构研究 [J]. 矿物岩石, 2006, 26(3): 6–11 doi: 10.3969/j.issn.1001-6872.2006.03.002

    ZHU X P, QIN S, LIU J, et al. Research of high-pressure structure of titanite [J]. Journal of Mineralogy and Petrology, 2006, 26(3): 6–11 doi: 10.3969/j.issn.1001-6872.2006.03.002
    [13]
    MIOTELLO A, KELLY R. Revisiting the thermal-spike concept in ion-surface interactions [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1997, 122(3): 458–469. doi: 10.1016/S0168-583X(96)00665-9
    [14]
    MELDRUM A, ZINKLE S J, BOATNER L A, et al. A transient liquid-like phase in the displacement cascades of zircon, hafnon and thorite [J]. Nature, 1998, 395(6697): 56–58. doi: 10.1038/25698
    [15]
    TRACHENKO K, DOVE M T, SALJE E K H. Structural changes in zircon under α-decay irradiation [J]. Physical Review B, 2002, 65(18): 180102. doi: 10.1103/PhysRevB.65.180102
    [16]
    GUCSIK A, ZHANG M, KOEBERL C, et al. Infrared and Raman spectra of ZrSiO4 experimentally shocked at high pressures [J]. Mineralogical Magazine, 2004, 68(5): 801–811. doi: 10.1180/0026461046850220
    [17]
    MEYERS M A. Shock waves: equations of state [M]. John Wiley & Sons Inc., 1994.
    [18]
    NELLIS W J, SEAMAN L, GRAHAM R A. Shock waves in condensed matter [M]. New York: American Institute of Physics, 1982.
    [19]
    经福谦, 陈俊祥. 动高压原理与技术 [M]. 北京: 国防工业出版社, 2006.

    JING F Q, CHEN J X. Principle and technology of dynamic high pressure [M]. Beijing: National Defense Industry Press, 2006.
    [20]
    ZHANG M, BOATNER L A, SALJE E K H, et al. Micro-Raman and micro-infrared spectroscopic studies of Pb-and Au-irradiated ZrSiO4: optical properties, structural damage, and amorphization [J]. Physical Review B, 2008, 77(14): 144110. doi: 10.1103/PhysRevB.77.144110
    [21]
    ZHANG M, SALJE E K H, BISMAYER U, et al. Metamictization and recrystallization of titanite: an infrared spectroscopic study [J]. American Mineralogist, 2002, 87(7): 882–890. doi: 10.2138/am-2002-0711
    [22]
    ZHANG M, SALJE E K H, REDFERN S A T, et al. Intermediate structures in radiation damaged titanite (CaTiSiO5): a Raman spectroscopic study [J]. Journal of Physics: Condensed Matter, 2013, 25(11): 115402. doi: 10.1088/0953-8984/25/11/115402
    [23]
    SALJE E K H, TAYLOR R D, SAFARIK D J, et al. Evidence for direct impact damage in metamict titanite CaTiSiO5 [J]. Journal of Physics: Condensed Matter, 2011, 24(5): 052202.
    [24]
    贺红亮, 金孝刚, 陈攀森, 等. Fe40Ni40P12B8非晶合金的冲击晶化实验研究 [J]. 高压物理学报, 1989, 3(3): 211–220 doi: 10.11858/gywlxb.1989.03.006

    HE H L, JIN X G, CHEN P S, et al. Experimental studies on the crystallization of amorphous Fe40Ni40P12B8 alloy under shock loading [J]. Chinese Journal of High Pressure Physics, 1989, 3(3): 211–220 doi: 10.11858/gywlxb.1989.03.006
    [25]
    祁美兰. 高纯铝拉伸型动态破坏的临界行为研究 [D]. 武汉:武汉理工大学, 2006.

    QI M L. Critical behavior in dynamic tensile fracture of high purity aluminum [D]. Wuhan: Wuhan University of Technology, 2006.
    [26]
    VANCE E R, METSON J B. Radiation damage in natural titanites [J]. Physics and Chemistry of Minerals, 1985, 12(5): 255–260. doi: 10.1007/BF00310337
    [27]
    SALJE E, SCHMIDT C, BISMAYER U. Structural phase transition in titanite, CaTiSiO5: a Raman spectroscopic study [J]. Physics and Chemistry of Minerals, 1993, 19(7): 502–506.
    [28]
    ZHANG M, GROAT L A, SALJE E K H, et al. Hydrous species in crystalline and metamict titanites [J]. American Mineralogist, 2001, 86(7/8): 904–909.
    [29]
    SCHNEIDER H. Infrared spectroscopic studies of experimentally shock-loaded quartz [J]. Meteoritics, 1978, 13(2): 227–234. doi: 10.1111/maps.1978.13.issue-2
    [30]
    THIEBLOT L, TEQUI C, RICHET P. High-temperature heat capacity of grossular (Ca3Al2Si3O12), enstatite (MgSiO3), and titanite (CaTiSiO5) [J]. American Mineralogist, 1999, 84(5/6): 848–855.
    [31]
    RÍOS S, BOFFA-BALLARAN T. Microstructure of radiation-damaged zircon under pressure [J]. Journal of Applied Crystallography, 2003, 36(4): 1006–1012. doi: 10.1107/S0021889803008574
    [32]
    TRACHENKO K, BRAZHKIN V V, TSIOK O B, et al. Pressure-induced structural transformation in radiation-amorphized zircon [J]. Physical Review Letters, 2007, 98(13): 135502. doi: 10.1103/PhysRevLett.98.135502
    [33]
    ZHANG M, SALJE E K H, CAPITANI G C, et al. Annealing of-decay damage in zircon: a Raman spectroscopic study [J]. Journal of Physics: Condensed Matter, 2000, 12(13): 3131. doi: 10.1088/0953-8984/12/13/321
    [34]
    ZHANG M. Raman study of the crystalline-to-amorphous state in alpha-decay-damaged materials [M]//MAAZ K. Raman Spectroscopy and Applications. InTech, 2017: 103–122.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views(6866) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return