Volume 21 Issue 4
Apr 2015
Turn off MathJax
Article Contents
CUI Xin-Lin, ZHU Wen-Jun, HE Hong-Liang, DENG Xiao-Liang, LI Ying-Jun. Phase Transformation Mechanism of Single Crystal Iron from MD Simulation[J]. Chinese Journal of High Pressure Physics, 2007, 21(4): 433-438 . doi: 10.11858/gywlxb.2007.04.017
Citation: CUI Xin-Lin, ZHU Wen-Jun, HE Hong-Liang, DENG Xiao-Liang, LI Ying-Jun. Phase Transformation Mechanism of Single Crystal Iron from MD Simulation[J]. Chinese Journal of High Pressure Physics, 2007, 21(4): 433-438 . doi: 10.11858/gywlxb.2007.04.017

Phase Transformation Mechanism of Single Crystal Iron from MD Simulation

doi: 10.11858/gywlxb.2007.04.017
More Information
  • Corresponding author: HE Hong-Liang
  • Received Date: 21 Mar 2007
  • Rev Recd Date: 26 Apr 2007
  • Publish Date: 05 Dec 2007
  • Shock-induced phase transformation (body-centered cubic phase to hexagonal close-packed phase) in single crystal iron has been investigated by means of molecular dynamics (MD) simulations using an embedded atom method (EAM) potential. The simulated dimension is 28.7 nm22.9 nm22.9 nm in size with 1.28106 atoms. The shock wave is generated by using a piston impact on the sample along the [100] direction. By analyzing the motion history of atoms under shock compression, the phase transformation mechanism has been outlined. The simulation results show that the phase transformation mechanism contains two steps: the atoms on the {011} planes are compressed along the 〈100〉 direction to form a hexagon in the first step, and then the atoms on {011} planes in the 〈0-11〉 direction are slipped to create the hcp structure in the second step. The results also show that the slip planes are only the (011) and (0-11) planes which are parallel with the shock wave propagation.

     

  • loading
  • Erskine D J, Nellis W J. Shock-Induced Martensitic Phase Transformation of Oriented Graphite to Diamond [J]. Nature, 1991, 349: 317-319.
    Dubrovinsky L S, Saxena S K, Lazor P, et al. Experimental and Theoretical Identification of a New High-Pressure Phase of Silica [J]. Nature, 1997, 388: 362-365.
    Brich F. Elasticity and Constitution of the Earth's Interior [J]. J Geophys Res, 1952, 57: 227-236.
    Jephcoat A, Olson P. Is the Inner Core of the Earth Pure Iron [J]. Nature, 1987, 325: 332-335.
    Minshall S. Properties of Elastic and Plastic Waves Determined by Pin Contactors and Crystals [J]. J Appl Phys, 1955, 26: 463-469.
    Bancroft D, Peterson E L, Minshall S. Polymorphism of Iron at High Pressure [J]. J Appl Phys, 1956, 27: 291-298.
    Yaakobi B, Boehly T R, Meyerhofer D D, et al. EXAFS Measurement of Iron bcc-to-hcp Phase Transformation in Nanosecond-Laser Shocks [J]. Phys Rev Lett, 2005, 95: 075501-1-4.
    Boettger J C, Wallace D C. Metastability and Dynamics of the Shock-Induced Phase Transition in Iron [J]. Phys Rev B, 1997, 55: 2840-2849.
    Kadau K, Germann T C, Lomdahl P S, et al. Microscopic View of Structural Phase Transitions Induced by Shock Waves [J]. Science, 2002, 296: 1681-1684.
    Kadau K, Germann T C, Lomdahl P S, et al. Atomistic Simulations of Shock-Induced Transformations and Their Orientation Dependence in bcc Fe Single Crystal [J]. Phys Rev B, 2005, 72: 064120-1-14.
    Kadau K, Germann T C, Lomdahl P S, et al. Shock Waves in Polycrystalline Iron [J]. Phys Rev Lett, 2007, 98: 135701-1-4.
    Bassett W A, Huang E. Mechanism of the Body-Centered Cubic-Hexagonal Close-Packed Phase Transformation in Iron [J]. Science, 1987, 248: 780-783.
    Kalantar D H, Belak J F, Collins G W, et al. Direct Observation of Transition in Shock-Compressed Iron via Nanosecond X-Ray Diffraction [J]. Phys Rev Lett, 2005, 95: 075502-1-4.
    Wang F M, Ingalls R. Iron bcc-hcp Transition: Local Structure from X-Ray-Absorption Fine Structure [J]. Phys Rev B, 1998, 57: 5647-5654.
    Hawreliak J, Colvin J D, Eggert J H, et al. Analysis of the X-Ray Diffraction Single for the Transition in Shock-Compressed Iron: Simulation and Experiment [J]. Phys Rev B, 2006, 74: 184107-1-16.
    Luo J, Zhu W J, Lin L B, et al. Molecular Dynamics Simulation of Void Growth in Single Crystal Copper under Uniaxial Impacting [J]. Acta Physica Sinica, 2005, 54: 2791-2798. (in Chinese)
    罗晋, 祝文军, 林理彬, 等. 单晶铜在动态加载下空洞增长的分子动力学研究 [J]. 物理学报, 2005, 54: 2791-2798.
    Harrison R J, Voter A F, Chen S P. Embedded Atom Potential For bcc Iron [A]//Vitek V, Srolovitz D J. Atomistic Simulation of Materials: Beyond Pair Potentials [C]. New York: Plenum, 1989: 219-222.
    Daw M S, Baskes M I. Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals [J]. Phys Rev Lett, 1983, 50: 1285-1288.
    Baskes M I. Modified Embedded-Atom Potentials for Cubic Materials and Impurities [J]. Phys Rev B, 1992, 46: 2727-2742.
    Honeycutt J D, Andersen H C. Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters [J]. J Phys Chem, 1987, 91: 4950-4963.
    Mao H K, Bassett W A, Takahashi T. Effect of Pressure on Crystal Structure and Lattice Parameters of Iron up to 300 kbar [J]. J Appl Phys, 1967, 38: 272-276.
    Burgers W G. On the Process of Transition of the Cubic-Body-Centered Modification into the Hexagonal-Closed-Packed Modification of Zirconium [J]. Phys, 1934, 1: 561-586.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(14003) PDF downloads(1054) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return