Volume 20 Issue 4
Apr 2015
Turn off MathJax
Article Contents
ZHANG Wan-Jia, LIU Cang-Li. Effective Viscosity Coefficients, Initial Mobile Dislocation Densities and Drag Stresses for Five Materials[J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 345-352 . doi: 10.11858/gywlxb.2006.04.002
Citation: ZHANG Wan-Jia, LIU Cang-Li. Effective Viscosity Coefficients, Initial Mobile Dislocation Densities and Drag Stresses for Five Materials[J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 345-352 . doi: 10.11858/gywlxb.2006.04.002

Effective Viscosity Coefficients, Initial Mobile Dislocation Densities and Drag Stresses for Five Materials

doi: 10.11858/gywlxb.2006.04.002
More Information
  • Corresponding author: ZHANG Wan-Jia
  • Received Date: 01 Jun 2005
  • Rev Recd Date: 28 Dec 2005
  • Publish Date: 05 Dec 2006
  • Based on the experimental results of the elastic precursor attenuation along with propagation distance, with rate-dependent constitutive relation including dislocation parameters, and according to the thermally activated dislocation motion model proposed by Gilman, the lower bounds of the initial mobile dislocation densities N0 and the drag stresses 0 have been obtained for LY12-aluminum, MB2-magnesium and lead respectively on the order of 106 cm-2 and 0.1 GPa, but for stainless steel, N0 and 0 are on the order of 108 cm-2 and 1.5 GPa. With the elastic precusor decay curve, the upper limits of the effective viscosity coefficient have been given also for LY12-aluminum and magnesium on the order of 103 Pas, and for 2#-iron and stainless steel on the order of 104 Pas.

     

  • loading
  • Mayers M A. Dynamic Behavior of Materials [M]. New York: Brisbane Toronto, Johm Willy Sons, Inc, 1994: 405-408.
    Gilman J J. Dislocation Dynamics and Response of Materials to Impact [J]. Appl Mech Rev, 1968, 21(8): 767.
    Johnson J N, Barker L M. Dislocation Dynamics and Steady Plastic Wave Profiles in 6061-T Aluminum [J]. J Appl Phys, 1969, 40(11): 4321-4334.
    Liu C L. Phenomenological Description of Viscous Coefficient on the Shock Wave Front [J]. Explosion and Shock Waves, 1989, 9(1): 61-67. (in Chinese)
    刘仓理. 冲击波阵面上粘度的一种唯象描述 [J]. 爆炸与冲击, 1989, 9(1): 61-67.
    Swegle J W, Grady D E. Shock Viscosity and the Prediction of Shock Wave Rise Times [J]. J Appl Phys, 1985, 58(2): 692-701.
    Grady D E. Strain-Rate Dependence of the Effective Viscosity under Steady-Wave Shock Compression [J]. Appl Phys Lett, 1981, 38(10): 825-827.
    Moss W C. Viscosity and Steady Shocks [J]. Appl Phys Lett, 1985, 47(4): 372.
    Taylor J W. Dislocation Dynamics and Dynamic Yielding [J]. J Appl Phys, 1965, 36(10): 3146-3150.
    Chhabildal L C, Asay J R. Rise-Time Measurements of Shock Transitions in Aluminum, Copper and Steel [J]. J Appl Phys, 1979, 50(4): 2749-2756.
    Mineev V N, Mineev A V. Viscosity of Metals under Shock-Loading Conditions [J]. J Phys France, 1997, 7(C3): 583-585.
    Johnson J N, Hixson R C, Gray G T, et al. Quasielastic Release in Shock-Compressed Solids [J]. J Appl Phys, 1992, 72(2): 429-441.
    Saimoto S. Correlation of the Applied Strain Rate with the Operative Mean Slip and Dislocation Velocities [J]. Mater Sci Eng A, 2004, 387: 129-132.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(8047) PDF downloads(984) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return