高温高压下UH3结构稳定性及其冲击分解

王玉锋 郝龙 吴凤超 耿华运 李俊

王玉锋, 郝龙, 吴凤超, 耿华运, 李俊. 高温高压下UH3结构稳定性及其冲击分解[J]. 高压物理学报, 2024, 38(3): 030108. doi: 10.11858/gywlxb.20240709
引用本文: 王玉锋, 郝龙, 吴凤超, 耿华运, 李俊. 高温高压下UH3结构稳定性及其冲击分解[J]. 高压物理学报, 2024, 38(3): 030108. doi: 10.11858/gywlxb.20240709
WANG Yufeng, HAO Long, WU Fengchao, GENG Huayun, LI Jun. Structural Stability and Shock Decomposition of UH3 at High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030108. doi: 10.11858/gywlxb.20240709
Citation: WANG Yufeng, HAO Long, WU Fengchao, GENG Huayun, LI Jun. Structural Stability and Shock Decomposition of UH3 at High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030108. doi: 10.11858/gywlxb.20240709

高温高压下UH3结构稳定性及其冲击分解

doi: 10.11858/gywlxb.20240709
基金项目: 冲击波物理与爆轰物理全国重点实验室基金(2023JCJQLB05401,6142A032020010)
详细信息
    作者简介:

    王玉锋(1988-),硕士,助理研究员,主要从事材料高压状态方程研究. E-mail:wyfeng01@126.com

    通讯作者:

    耿华运(1976-),博士,研究员,主要从事凝聚态物理研究. E-mail:s102genghy@caep.cn

  • 中图分类号: O521.2

Structural Stability and Shock Decomposition of UH3 at High Temperature and High Pressure

  • 摘要: 利用统计物理模型构建了UH3晶体及其化学分解产物的状态方程,通过比较Gibbs自由能获得了UH3的高温高压相图,并将其应用于疏松和密实UH3冲击压缩性质研究中。结果表明:等温压缩下,UH3晶体在压力约74.0 GPa时发生化学分解,提高温度有助于化学分解的发生,但压力对UH3化学分解相边界的影响是非单调的;冲击加载下,密实UH3在35~50 GPa压力范围内发生化学分解,并且由于冲击分解伴随着明显的体积塌缩,分解产物的雨贡纽曲线位于等温压缩线下方,曲线位置关系反常;UH3的冲击分解压力随着疏松度的增大而减小,当UH3材料的初始疏松度为1.5时,在化学分解转变压力范围内,UH3的分解产物比UH3晶体更难压缩,表现出类似大疏松度材料在冲击作用下的“反常膨胀”现象。研究结果丰富了对UH3材料动态压缩特性的认识,为锕系金属氢化物的高温高压物理化学性质研究提供了理论参考。

     

  • 图  U和H2的状态方程计算结果与文献数据的比较

    Figure  1.  Comparison of calculation results of uranium and hydrogen EOS model with reference data

    图  U和H2的冲击温度和声速随压力的变化

    Figure  2.  Variations of shock temperature and sound velocity of uranium and hydrogen with pressure

    图  UH3晶体及其分解产物的等温压缩线的比较

    Figure  3.  Comparison of isotherm between UH3 crystal and its decomposition products

    图  UH3晶体及其分解产物的Gibbs自由能差值随压力的变化

    Figure  4.  Variation of Gibbs free energy differences for UH3 crystal and its decomposition products with pressure

    图  UH3的高温高压相图

    Figure  5.  Phase diagram of UH3 at high temperature and high pressure

    图  不同初始密度UH3材料的冲击温度随压力的变化

    Figure  6.  Variation of shock temperature with pressure of UH3 with different initial densities

    图  不同初始密度UH3材料的冲击压力随比容的变化

    Figure  7.  Variation of shock pressure with specific volume of UH3 with different initial densities

    图  不同初始密度UH3材料的冲击波速度随粒子速度的变化

    Figure  8.  Variation of shock velocity with particle velocity of UH3 with different initial densities

    表  1  UH3晶体相的状态方程参数

    Table  1.   Equation of state parameters for UH3 crystal phase

    V0/(cm3·g−1) V0K/(cm3·g−1) B0/GPa $ {B}'{_{{ 0}}}$ ΘD0/K ΘE0/K g1 g2 g3 g4
    0.0916 0.0882 123 4.76 169 1400 −0.1 1.2 4.17 −3.23
    下载: 导出CSV
  • [1] SOUTER P F, KUSHTO G P, ANDREWS L, et al. Experimental and theoretical evidence for the formation of several uranium hydride molecules [J]. Journal of the American Chemical Society, 1997, 119(7): 1682–1687. doi: 10.1021/ja9630809
    [2] BANOS A, HARKER N J, SCOTT T B. A review of uranium corrosion by hydrogen and the formation of uranium hydride [J]. Corrosion Science, 2018, 136: 129–147. doi: 10.1016/j.corsci.2018.03.002
    [3] LE GUYADEC F, GÉNIN X, BAYLE J P, et al. Pyrophoric behaviour of uranium hydride and uranium powders [J]. Journal of Nuclear Materials, 2010, 396(2/3): 294–302. doi: 10.1016/j.jnucmat.2009.11.007
    [4] BLOCH J, MINTZ M H. Kinetics and mechanisms of metal hydrides formation: a review [J]. Journal of Alloys and Compounds, 1997, 253/254: 529–541. doi: 10.1016/S0925-8388(96)03070-8
    [5] DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8
    [6] KONG P P, MINKOV V S, KUZOVNIKOV M A, et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure [J]. Nature Communications, 2021, 12(1): 5075. doi: 10.1038/s41467-021-25372-2
    [7] KRUGLOV I A, KVASHNIN A G, GONCHAROV A F, et al. Uranium polyhydrides at moderate pressures: prediction, synthesis, and expected superconductivity [J]. Science Advances, 2018, 4(10): eaat9776. doi: 10.1126/sciadv.aat9776
    [8] GUIGUE B, MARIZY A, LOUBEYRE P. Synthesis of UH7 and UH8 superhydrides: additive-volume alloys of uranium and atomic metal hydrogen down to 35 GPa [J]. Physical Review B, 2020, 102(1): 014107. doi: 10.1103/PhysRevB.102.014107
    [9] KÝVALA L, HAVELA L, KADZIELAWA A P, et al. Electrons and phonons in uranium hydrides: effects of polar bonding [J]. Journal of Nuclear Materials, 2022, 567: 153817. doi: 10.1016/j.jnucmat.2022.153817
    [10] WANG X H, LI M L, ZHENG F W, et al. Crystal structure prediction of uranium hydrides at high pressure: a new hydrogen-rich phase [J]. Physics Letters A, 2018, 382(40): 2959–2964. doi: 10.1016/j.physleta.2018.06.040
    [11] LIU M, SHI Y P, LIU M F, et al. First-principles comprehensive study of electronic and mechanical properties of novel uranium hydrides at different pressures [J]. Progress in Natural Science: Materials International, 2020, 30(2): 251–259. doi: 10.1016/j.pnsc.2020.01.019
    [12] MARSH S P. LASL shock Hugoniot data [M]. Berkeley: University of California Press, 1980.
    [13] SYONO Y, KUSABA K, FUKUOKA K, et al. Shock compression of V2H and V2D to 135 GPa and anomalous decompression behavior [J]. Physical Review B, 1984, 29(12): 6520–6524. doi: 10.1103/PhysRevB.29.6520
    [14] TAGUCHI H, FUKAI Y, ATOU T, et al. Shock compression of NbH0.75 and TaH0.50: universal compression behavior of hydrogen in metallic environments [J]. Physical Review B, 1994, 49(5): 3025–3029. doi: 10.1103/physrevb.49.3025
    [15] GOLUBKOV A N, GUDARENKO L F, ZHERNOKLETOV M V, et al. Shock compression of vanadium hydrides and deuterides with different concentrations of gas atoms [J]. Combustion, Explosion, and Shock Waves, 2017, 53(3): 309–318. doi: 10.1134/S001050821703008X
    [16] GOLUBKOV A N, GUDARENKO L F, ZHERNOKLETOV M V, et al. Shock compression of titanium hydride and titanium, tantalum, and zirconium deuterides [J]. Combustion, Explosion, and Shock Waves, 2021, 57(4): 479–486. doi: 10.1134/S0010508221040110
    [17] TAYLOR C D, LOOKMAN T, LILLARD R S. Ab initio calculations of the uranium-hydrogen system: thermodynamics, hydrogen saturation of α-U and phase-transformation to UH3 [J]. Acta Materialia, 2010, 58(3): 1045–1055. doi: 10.1016/j.actamat.2009.10.021
    [18] FILANOVICH A N, POVZNER A A. Modeling of unusual lattice properties of superconducting PuCoIn5 based on ab initio calculation [J]. Physica B: Condensed Matter, 2019, 575: 411693. doi: 10.1016/j.physb.2019.411693
    [19] SJOSTROM T, CROCKETT S, RUDIN S. Multiphase aluminum equations of state via density functional theory [J]. Physical Review B, 2016, 94(14): 144101. doi: 10.1103/PhysRevB.94.144101
    [20] 吴强, 经福谦, 李欣竹. 零温物态方程输入参数B0K ${B'_{{\mathrm{0K}}} }$ ρ0K的确定 [J]. 高压物理学报, 2005, 19(2): 97–104. doi: 10.11858/gywlxb.2005.02.001

    WU Q, JING F Q, LI X Z. Determination of the input parameters B0K ${B'_{{\mathrm{0K}}} }$ ρ0K for 0 K universal isothermal equation of state [J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 97–104. doi: 10.11858/gywlxb.2005.02.001
    [21] OLSSON P A T, BLOMQVIST J, BJERKÉN C, et al. Ab initio thermodynamics investigation of titanium hydrides [J]. Computational Materials Science, 2015, 97: 263–275. doi: 10.1016/j.commatsci.2014.10.029
    [22] NEKRASOV I, OVCHINIKOV S. Hydrides under high pressure [J]. Journal of Superconductivity and Novel Magnetism, 2022, 35(4): 959–963. doi: 10.1007/s10948-021-06087-3
    [23] SALKE N P, ESFAHANI M M D, ZHANG Y J, et al. Synthesis of clathrate cerium superhydride CeH9 at 80–100 GPa with atomic hydrogen sublattice [J]. Nature Communications, 2019, 10(1): 4453. doi: 10.1038/s41467-019-12326-y
    [24] ZHANG L, ZHAO Y H, SONG H Z, et al. Initial decomposition mechanisms and the inverse effects of temperature and PH2 on the thermodynamics stability of UH3 [J]. Physical Chemistry Chemical Physics, 2023, 23(17): 12515–12521. doi: 10.1039/D2CP05931B
    [25] GROVER R. Liquid metal equation of state based on scaling [J]. The Journal of Chemical Physics, 1971, 55(7): 3435–3441. doi: 10.1063/1.1676596
    [26] ROSS M, REE F H, YOUNG D A. The equation of state of molecular hydrogen at very high density [J]. The Journal of Chemical Physics, 1983, 79(3): 1487–1494. doi: 10.1063/1.445939
    [27] ZHANG T T, WANG Y C, XIAN J W, et al. Effect of the projector augmented wave potentials on the simulation of thermodynamic properties of vanadium [J]. Matter and Radiation at Extremes, 2021, 6(6): 068401. doi: 10.1063/5.0059360
    [28] LIU H F, SONG H F, ZHANG Q L, et al. Validation for equation of state in wide regime: copper as prototype [J]. Matter and Radiation at Extremes, 2016, 1(2): 123–131. doi: 10.1016/j.mre.2016.03.002
    [29] LI Q, LIU H F, ZHANG G M, et al. The thermodynamical instability induced by pressure ionization in fluid helium [J]. Physics of Plasmas, 2016, 23(11): 112709. doi: 10.1063/1.4968828
    [30] DEWAELE A, BOUCHET J, OCCELLI F, et al. Refinement of the equation of state of α-uranium [J]. Physical Review B, 2013, 88(13): 134202. doi: 10.1103/PhysRevB.88.134202
    [31] JI C, LI B, LIU W J, et al. Ultrahigh-pressure isostructural electronic transitions in hydrogen [J]. Nature, 2019, 573(7775): 558–562. doi: 10.1038/s41586-019-1565-9
    [32] YOO C S, AKELLA J, MORIARTY J A. High-pressure melting temperatures of uranium: laser-heating experiments and theoretical calculations [J]. Physical Review B, 1993, 48(21): 15529–15534. doi: 10.1103/physrevb.48.15529
    [33] MINEEV V N, FUNTIKOV A I. Measurements of the viscosity of iron and uranium under shock compression [J]. High Temperature, 2006, 44(6): 941–949. doi: 10.1007/s10740-006-0113-0
    [34] PANKRATOV D G, YAKUNIN A K, POPTSOV A G, et al. Sound velocity in natural shock-compressed uranium in a pressure range of 20–260 GPa [J]. Combustion, Explosion, and Shock Waves, 2021, 57(6): 746–750. doi: 10.1134/S0010508221060149
    [35] DUFFY T S, VOS W L, ZHA C S, et al. Sound velocities in dense hydrogen and the interior of Jupiter [J]. Science, 1994, 263(5153): 1590–1593. doi: 10.1126/science.263.5153.1590
    [36] FREIMAN Y A, GRECHNEV A, TRETYAK S M, et al. Sound velocities in solid hydrogen under pressure [J]. Low Temperature Physics, 2013, 39(5): 423–426. doi: 10.1063/1.4807043
    [37] WU J F, WANG Y C, LIU Y, et al. First-principles study on the electronic structure transition of β-UH3 under high pressure [J]. Matter and Radiation at Extremes, 2022, 7(5): 058402. doi: 10.1063/5.0091969
    [38] ABRAHAM B M, FLOTOW H E. The heats of formation of uranium hydride, uranium deuteride and uranium tritide at 25 ℃ [J]. Journal of the American Chemical Society, 1955, 77(6): 1446–1448. doi: 10.1021/ja01611a013
    [39] GENG H Y, WU Q, TAN H, et al. Extension of the Wu-Jing equation of state for highly porous materials: thermoelectron based theoretical model [J]. Journal of Applied Physics, 2002, 92(10): 5924–5929. doi: 10.1063/1.1516619
    [40] GENG H Y, WU Q, TAN H, et al. Extension of the Wu-Jing equation of state for highly porous materials: calculations to validate and compare the thermoelectron model [J]. Journal of Applied Physics, 2002, 92(10): 5917–5923. doi: 10.1063/1.1516618
    [41] KENT P R C, KOTLIAR G. Toward a predictive theory of correlated materials [J]. Science, 2018, 361(6400): 348–354. doi: 10.1126/science.aat5975
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  5
  • PDF下载量:  9
出版历程
  • 收稿日期:  2024-01-13
  • 修回日期:  2024-03-19
  • 网络出版日期:  2024-05-07
  • 刊出日期:  2024-06-03

目录

    /

    返回文章
    返回