大腔体压机腔体压强28 GPa的标定方法

葛雨非 由存 王星淋 连敏 赵鑫宇 丰丙涛 马孝慈 陶强 胡阔 刘兆东 周强 朱品文

葛雨非, 由存, 王星淋, 连敏, 赵鑫宇, 丰丙涛, 马孝慈, 陶强, 胡阔, 刘兆东, 周强, 朱品文. 大腔体压机腔体压强28 GPa的标定方法[J]. 高压物理学报, 2024, 38(3): 030201. doi: 10.11858/gywlxb.20230807
引用本文: 葛雨非, 由存, 王星淋, 连敏, 赵鑫宇, 丰丙涛, 马孝慈, 陶强, 胡阔, 刘兆东, 周强, 朱品文. 大腔体压机腔体压强28 GPa的标定方法[J]. 高压物理学报, 2024, 38(3): 030201. doi: 10.11858/gywlxb.20230807
GE Yufei, YOU Cun, WANG Xinglin, LIAN Min, ZHAO Xinyu, FENG Bingtao, MA Xiaoci, TAO Qiang, HU Kuo, LIU Zhaodong, ZHOU Qiang, ZHU Pinwen. Pressure Calibration Method of 28 GPa for Large-Volume Press[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030201. doi: 10.11858/gywlxb.20230807
Citation: GE Yufei, YOU Cun, WANG Xinglin, LIAN Min, ZHAO Xinyu, FENG Bingtao, MA Xiaoci, TAO Qiang, HU Kuo, LIU Zhaodong, ZHOU Qiang, ZHU Pinwen. Pressure Calibration Method of 28 GPa for Large-Volume Press[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030201. doi: 10.11858/gywlxb.20230807

大腔体压机腔体压强28 GPa的标定方法

doi: 10.11858/gywlxb.20230807
基金项目: 国家自然科学基金(11974131);国家重点研发计划项目(2018YFA0703400);“综合极端条件实验装置”国家重大科技基础设施项目(发改投资〔2017〕1597号)
详细信息
    作者简介:

    葛雨非(1994-),男,博士,助理研究员,主要从事高温高压超硬/硬质功能材料制备及物性研究. E-mail:yufeige@jlu.edu.cn

    通讯作者:

    陶 强(1988-),男,博士,副教授,主要从事高温高压合成新结构以及新型超硬材料研究. E-mail:qiangtao@jlu.edu.cn

    朱品文(1972-),男,博士,教授,主要从事高温高压下新型多功能超硬材料的制备与物性研究. E-mail:zhupw@jlu.edu.cn

  • 中图分类号: O521.2; O521.3

Pressure Calibration Method of 28 GPa for Large-Volume Press

  • 摘要: 在大腔体压机中,一般利用压标物质相变时的电阻变化进行腔体压强标定,但目前仍缺少在22.5~34.5 GPa区间的相变压标物质。地球深部矿物50%MgSiO3-50%Al2O3(En50Cor50)在高温高压下转变为钙钛矿结构,且在27 GPa以上钙钛矿结构MgSiO3中溶解的Al2O3含量随压力升高而增加。为此,选取En50Cor50作为大腔体压机中28 GPa的压标物质进行高压腔体压强的间接标定。首先,利用常用压标物质的相变进行腔体压强标定,得到低压区系统油压-腔体压强的校正曲线(6.0~22.5 GPa);随后,根据低压区校正曲线及前人对En50Cor50的研究结果,估算28 GPa腔体压强对应的系统油压;将En50Cor50在预估油压、2000 K温度条件下保温3~7 h;最后,利用X射线衍射、拉曼光谱、电子探针等手段对En50Cor50进行测试分析。结果表明:在该条件下成功合成了布里奇曼石,且Al2O3的溶解度大于13.7%,对照前人的研究结果,确定样品腔体压强约为29 GPa。该方法成功标定了大腔体压机在28 GPa附近的腔体压强,填补了大腔体压机在该压强范围的标定空白。

     

  • 图  3000 t Kawai型LVP

    Figure  1.  3000 t Kawai-type LVP

    图  压标物质ZnTe、ZnS、GaAs和GaP的电阻-油压曲线

    Figure  2.  Electrical resistance-oil pressure curves of pressure calibration materials: ZnTe, ZnS, GaAs and GaP

    图  矿物标压实验样品的拉曼光谱(a)和XRD谱(b)

    Figure  3.  Raman spectra (a) and XRD pattern (b) of pressure calibration mineral sample

    图  样品的EDS元素含量分析:(a) 扫描图像,(b) 元素能谱

    Figure  4.  EDS element content analysis at sample selection point: (a) SEM image; (b) elemental spectrum

    图  BSE图像:(a) 保温3 h样品, (b) 保温7 h样品

    Figure  5.  BSE images: (a) sample held for 3 h; (b) sample held for 7 h

    图  2000 K下MgSiO3-Al2O3体系中各相的关系[1213]

    Figure  6.  Phase relations in the MgSiO3-Al2O3 system at 2000 K[1213]

    图  腔体压强标定曲线

    Figure  7.  High pressure chamber pressure calibration curve

    表  1  压标材料及其相变压力

    Table  1.   Pressure calibration materials and their phase transition pressure

    Pressure calibration material Phase transition pressure/GPa
    Bi (Ⅰ-Ⅱ) 2.6
    Bi (Ⅱ-Ⅲ) 2.7
    Tl (Ⅱ-Ⅲ) 3.7
    Ba 5.5
    ZnTe (Ⅰ-Ⅱ) 6.6
    Bi (Ⅲ-Ⅳ) 7.7
    ZnTe (Ⅱ-Ⅲ) 8.9−9.5
    ZnTe (Ⅲ-Ⅳ) 11.5−13.0
    ZnS 15.6
    GaAs 18.9
    GaP 22.5
    Zr 34.5
    下载: 导出CSV

    表  2  EDS选点测试得到的En50Cor50样品内各成分的摩尔分数

    Table  2.   Molar fraction of each component obtained by EDS measurement in En50Cor50 sample

    Element Molar fraction/%
    Mg 21.67
    Si 23.13
    Al 7.71
    MgO 35.94
    SiO2 49.49
    Al2O3 14.58
    下载: 导出CSV

    表  3  EMPA测试的样品内布里奇曼石中各组分的摩尔分数

    Table  3.   Molar fraction of each component obtained by EMPA in bridgmanite of sample

    Composition Molar fraction/%
    MgO 34.67
    SiO2 51.61
    Al2O3 13.74
    下载: 导出CSV
  • [1] 刘志国, 千正男. 高压技术 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2012: 113–114.

    LIU Z G, QIAN Z N. High pressure technology [M]. Harbin: Harbin Institute of Technology Press, 2012: 113–114.
    [2] LIEBERMANN R C. Multi-anvil, high pressure apparatus: a half-century of development and progress [J]. High Pressure Research, 2011, 31(4): 493–532. doi: 10.1080/08957959.2011.618698
    [3] 彭放, 贺端威. 应用于高压科学研究的国产铰链式六面顶压机技术发展历程 [J]. 高压物理学报, 2018, 32(1): 010105. doi: 10.11858/gywlxb.20170600

    PENG F, HE D W. Development of domestic hinge-type cubic presses based on high pressure scientific research [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010105. doi: 10.11858/gywlxb.20170600
    [4] ISHII T, SHI L L, HUANG R, et al. Generation of pressures over 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvils [J]. Review of Scientific Instruments, 2016, 87(2): 024501. doi: 10.1063/1.4941716
    [5] YAMAZAKI D, SHINMEI T, INOUE T, et al. Generation of pressures to ~60 GPa in Kawai-type apparatus and stability of MnGeO3 perovskite at high pressure and high temperature [J]. American Mineralogist, 2006, 91(8/9): 1342–1345. doi: 10.2138/am.2006.2175
    [6] TANGE Y, IRIFUNE T, FUNAKOSHI K I. Pressure generation to 80 GPa using multianvil apparatus with sintered diamond anvils [J]. High Pressure Research, 2008, 28(3): 245–254. doi: 10.1080/08957950802208936
    [7] HOUSER C. Earth’s rugged lower mantle [J]. Science, 2019, 363(6428): 696–697. doi: 10.1126/science.aaw4601
    [8] TANG H, YUAN X H, CHENG Y, et al. Synthesis of paracrystalline diamond [J]. Nature, 2021, 599(7886): 605–610. doi: 10.1038/s41586-021-04122-w
    [9] YAMAZAKI D, KATO T, OHTANI E, et al. Grain growth rates of MgSiO3 perovskite and periclase under lower mantle conditions [J]. Science, 1996, 274(5295): 2052–2054. doi: 10.1126/science.274.5295.2052
    [10] SHANG Y C, SHEN F R, HOU X Y, et al. Pressure generation above 35 GPa in a Walker-type large-volume press [J]. Chinese Physics Letters, 2020, 37(8): 080701. doi: 10.1088/0256-307X/37/8/080701
    [11] KUBO A, AKAOGI M. Post-garnet transitions in the system Mg4Si4O12-Mg3Al2Si3O12 up to 28 GPa: phase relations of garnet, ilmenite and perovskite [J]. Physics of the Earth and Planetary Interiors, 2000, 121(1/2): 85–102. doi: 10.1016/S0031-9201(00)00162-X
    [12] LIU Z D, IRIFUNE T, NISHI M, et al. Phase relations in the system MgSiO3-Al2O3 up to 52 GPa and 2000 K [J]. Physics of the Earth and Planetary Interiors, 2016, 257: 18–27. doi: 10.1016/j.pepi.2016.05.006
    [13] LIU Z D, NISHI M, ISHII T, et al. Phase relations in the system MgSiO3-Al2O3 up to 2300 K at lower mantle pressures [J]. Journal of Geophysical Research: Solid Earth, 2017, 122(10): 7775–7788. doi: 10.1002/2017JB014579
    [14] ONODERA A, OHTANI A. Fixed points for pressure calibration above 100 kbars related to semiconductor-metal transitions [J]. Journal of Applied Physics, 2008, 51(5): 2581–2585. doi: 10.1063/1.327984
    [15] ITO E, KATSURA T, YAMAZAKI D, et al. A new 6-axis apparatus to squeeze the Kawai-cell of sintered diamond cubes [J]. Physics of the Earth and Planetary Interiors, 2009, 174(1): 264–269. doi: 10.1016/j.pepi.2008.11.007
    [16] AMULELE G, KARATO S I, GIRARD J. Melting of bridgmanite under hydrous shallow lower mantle conditions [J]. Journal of Geophysical Research: Solid Earth, 2021, 126(9): e2021JB022222. doi: 10.1029/2021JB022222
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  3
  • PDF下载量:  15
出版历程
  • 收稿日期:  2023-12-08
  • 修回日期:  2023-12-20
  • 录用日期:  2024-01-17
  • 刊出日期:  2024-06-03

目录

    /

    返回文章
    返回