深部岩石爆破裂纹扩展与不耦合装药系数的关系

陈啸林 张智宇 王凯 彭磊

陈啸林, 张智宇, 王凯, 彭磊. 深部岩石爆破裂纹扩展与不耦合装药系数的关系[J]. 高压物理学报, 2023, 37(5): 054203. doi: 10.11858/gywlxb.20230649
引用本文: 陈啸林, 张智宇, 王凯, 彭磊. 深部岩石爆破裂纹扩展与不耦合装药系数的关系[J]. 高压物理学报, 2023, 37(5): 054203. doi: 10.11858/gywlxb.20230649
CHEN Xiaolin, ZHANG Zhiyu, WANG Kai, PENG Lei. Relation between Crack Propagation and Decoupling Charging Coefficient in Deep Rock Blasting[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 054203. doi: 10.11858/gywlxb.20230649
Citation: CHEN Xiaolin, ZHANG Zhiyu, WANG Kai, PENG Lei. Relation between Crack Propagation and Decoupling Charging Coefficient in Deep Rock Blasting[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 054203. doi: 10.11858/gywlxb.20230649

深部岩石爆破裂纹扩展与不耦合装药系数的关系

doi: 10.11858/gywlxb.20230649
基金项目: 国家自然科学基金(52064025);云南省重大科技项目(202202AG050014)
详细信息
    作者简介:

    陈啸林(1998-),男,硕士研究生,主要从事工程爆破研究. E-mail:1395156573@qq.com

    通讯作者:

    张智宇(1973-),男,硕士,教授,博士生导师,主要从事采矿工程及工程爆破研究. E-mail:924221851@qq.com

  • 中图分类号: O346

Relation between Crack Propagation and Decoupling Charging Coefficient in Deep Rock Blasting

  • 摘要: 通过数值模拟,研究了有无地应力条件下深部岩石爆破过程中裂纹扩展与不耦合装药系数之间的关系。模拟结果表明:初始地应力对爆破裂纹产生和扩展的影响较大;粉碎区半径、裂隙区半径、径向裂纹扩展最大长度以及炮孔孔壁应力峰值均随不耦合装药系数的增大而降低。通过动焦散相似试验,根据不同不耦合系数对应的径向裂纹扩展长度,构建了径向裂纹扩展长度与不耦合系数间的关系式,关系式与试验结果的拟合度达0.974。深部岩体爆破开挖过程中,可根据径向裂纹扩展长度与不耦合系数之间的关系设计爆破参数,以达到高效率爆破开采的目的。研究结果可为矿山深部高效率爆破开采提供一定的参考。

     

  • 图  RHT模型

    Figure  1.  RHT model

    图  有限元模型示意图

    Figure  2.  Schematic diagram of finite element model

    图  模型加载示意图

    Figure  3.  Loading diagram of model

    图  无围压下岩石双孔爆破过程中裂纹扩展与压力的演化过程

    Figure  4.  Crack propagation and pressure evolution processes without confining pressure in rock under double-hole blasting

    图  双向等围压下岩石双孔爆破裂纹扩展与压力的演化过程

    Figure  5.  Crack propagation and pressure evolution processes of rock under double-hole blasting with bidirectional constant confining pressure

    图  双孔爆破过程中测点的环向应力时程曲线

    Figure  6.  Hoop stress history curves of monitoring points under double-hole blasting

    图  不同不耦合系数下孔壁的应力时程曲线

    Figure  7.  Hole wall stress-time curves under different decoupling coefficients

    图  不同不耦合系数下裂纹的扩展情况

    Figure  8.  Crack propagation under different decoupling coefficients

    图  双向等围压下粉碎区半径和裂隙区半径随不耦合系数的变化规律

    Figure  9.  Variation laws of radii of crushing zone and fracture zone with decoupling coefficient under bidirectional constant confining pressure

    图  10  双向等围压下径向裂纹最大长度随不耦合系数的变化规律

    Figure  10.  Variation law of the maximum length of radial crack with decoupling coefficient under bidirectional constant confining pressure

    图  11  试件爆后的形态

    Figure  11.  Specimen patterns after explosion

    图  12  爆后试件裂纹扩展形态

    Figure  12.  Crack propagation morphology of specimen after explosion

    图  13  双向等围压下试件径向裂纹长度随不耦合系数的变化规律

    Figure  13.  Variation law of radial crack length of specimen with decoupling coefficient under bidirectional constant confining pressure

    表  1  花岗岩参数

    Table  1.   Granite parameters

    ρ/(kg·m−3)E/GPaνσbc/MPaRm/MPaG/GPaK/GPa
    2650600.2415015.024.1938.46
    下载: 导出CSV

    表  2  岩石RHT模型的部分参数

    Table  2.   Some parameters of the rock RHT model

    fc/GPa α0 pel/GPa βc βt A1/GPa A2/GPa A3/GPa B0 B1 T1/GPa
    0.1678 1.0 0.0363 0.0102 0.0278 55.90 89.44 48.64 1.6 1.6 55.90
    T2/GPa $ \dot\varepsilon {_0^{\,}}^{ \text{c}}/{\rm{s}}^{-1} $ $ \dot\varepsilon {_0^{\,}}^{ \text{t}}/{\rm{s}}^{-1} $ $ \dot\varepsilon ^{\text{c}} /{\rm{s}}^{-1}$ $\dot\varepsilon ^{\text{t}} /{\rm{s}}^{-1}$ D1 D2 B $g_{\rm{t}}^*$ A n
    0 3.0×10−5 3.0×10−6 3.0×1025 3.0×1025 0.04 1 0.05 0.7 2.51 0.72
    pcomp/MPa $f_\text{s}^*$ $f_\text{t}^*$ Q0 $g_{\rm{c}}^* $ ξ $\varepsilon _\text{p}^{\text{m} }$ Af nf N
    6.00 0.21 0.04 0.68 0.53 0.5 0.015 0.25 0.62 3.00
    下载: 导出CSV

    表  3  炸药材料和JWL状态方程参数

    Table  3.   Explosive materials and the JWL equation of state parameters

    ρ/(kg·m−3)Cd/(m·s−1)Ae/GPaBe/GPaR1R2 ω
    11504500625.323.295.251.60.28
    下载: 导出CSV

    表  4  模拟结果的定量分析

    Table  4.   Quantitative results of simulation

    kCrushing area
    radius/cm
    Radius of circumferential crack zone/cmMaximum length
    of radial crack/cm
    x-axis y-axisDiagonal 1Diagonal 2Average
    1.223.444.749.840.141.143.959.8
    1.421.239.641.738.639.839.953.2
    1.618.436.132.233.333.433.838.5
    1.815.529.828.225.226.927.531.0
    2.014.026.625.624.623.725.129.4
    下载: 导出CSV

    表  5  有机玻璃的动态力学参数

    Table  5.   Dynamic mechanical parameters of PMMA

    ρ/(kg·m−3)E/GPaνσm/MPaCp/(m·s−1)Cs/(m·s−1)G/GPa
    11806.10.31130232012601.28
    下载: 导出CSV

    表  6  模型试件的测量结果

    Table  6.   Measurement results of model specimen

    k Crushing area
    radius/cm
    Radius of circumferential crack zone/cm Maximum length of radial crack/cm
    x-axis y-axis Diagonal 1 Diagonal 2 Average Crack 1 Crack 2 Crack 3 Crack 4 Average
    1.2 1.2 3.8 3.4 3.6 3.7 3.6 7.2 9.4 6.9 7.7 7.8
    1.4 1.0 3.6 3.1 3.1 3.2 3.3 7.9 6.3 5.8 6.7
    1.7 0.8 3.4 3.1 3.0 2.8 3.1 3.3 5.3 4.3
    2.0 0.6 2.9 2.8 3.3 2.5 2.9 3.5 3.5
    下载: 导出CSV
  • [1] 梁瑞, 李生荣, 包娟, 等. 高地应力下岩体的爆破损伤及能量特性 [J]. 高压物理学报, 2022, 36(6): 064202.

    LIANG R, LI S R, BAO J, et al. Blasting damage and energy characteristics of rock mass under high in-situ stress [J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064202.
    [2] BENDEZU M, ROMANEL C, ROEHL D. Finite element analysis of blast-induced fracture propagation in hard rocks [J]. Computers & Structures, 2017, 182: 1–13.
    [3] 杨仁树, 丁晨曦, 杨立云. 高应力状态下穿过层理爆破致裂的动态行为研究 [J]. 岩石力学与工程学报, 2018, 37(4): 801–808. doi: 10.13722/j.cnki.jrme.2017.1001

    YANG R S, DING C X, YANG L Y. Blast cracking of borehole-crossed bedding under high stress condition [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 801–808. doi: 10.13722/j.cnki.jrme.2017.1001
    [4] 田浩帆, 雷振, 包太, 等. 初始地应力作用下岩石爆破裂纹扩展研究 [J]. 有色金属工程, 2022, 12(3): 138–146, 159. doi: 10.3969/j.issn.2095-1744.2022.03.018

    TIAN H F, LEI Z, BAO T, et al. Study on rock blasting crack growth under initial in-situ stress [J]. Nonferrous Metals Engineering, 2022, 12(3): 138–146, 159. doi: 10.3969/j.issn.2095-1744.2022.03.018
    [5] 岳中文, 田世颖, 张士春, 等. 单向围压作用下切缝药包爆破爆生裂纹扩展规律的研究 [J]. 振动与冲击, 2019, 38(23): 186–195. doi: 10.13465/j.cnki.jvs.2019.23.027

    YUE Z W, TIAN S Y, ZHANG S C, et al. Expanding law of cracks formed by slotted cartridge blast under unidirectional confining pressure [J]. Journal of Vibration and Shock, 2019, 38(23): 186–195. doi: 10.13465/j.cnki.jvs.2019.23.027
    [6] 刘超, 崔娜. 不同地应力下煤体爆破裂纹扩展规律研究 [J]. 煤炭技术, 2018, 37(6): 3–5. doi: 10.13301/j.cnki.ct.2018.06.002

    LIU C, CUI N. Study on crack propagation in coal mass blasting under different in-situ stress [J]. Coal Technology, 2018, 37(6): 3–5. doi: 10.13301/j.cnki.ct.2018.06.002
    [7] 徐颖, 孟益平, 程玉生. 装药不耦合系数对爆破裂纹控制的试验研究 [J]. 岩石力学与工程学报, 2002, 21(12): 1843–1847. doi: 10.3321/j.issn:1000-6915.2002.12.020

    XU Y, MENG Y P, CHENG Y S. Study on control of blast crack by decoupling charge index [J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(12): 1843–1847. doi: 10.3321/j.issn:1000-6915.2002.12.020
    [8] 程健. 爆破参数对深孔预裂爆破裂隙扩展机理的影响研究 [J]. 内蒙古煤炭经济, 2018(13): 58–59, 108. doi: 10.3969/j.issn.1008-0155.2018.13.034
    [9] 霍晓锋, 史秀志, 苟永刚. 边帮控制爆破裂纹扩展模拟及参数优化 [J]. 爆破, 2019, 36(1): 21–28. doi: 10.3963/j.issn.1001-487X.2019.01.004

    HUO X F, SHI X Z, GOU Y G. Simulation of crack growth in sidewall controlled blasting and parameter optimization [J]. Blasting, 2019, 36(1): 21–28. doi: 10.3963/j.issn.1001-487X.2019.01.004
    [10] 沈世伟, 李国良, 李冬, 等. 不同角度预制裂隙条件下双孔爆破裂纹扩展规律 [J]. 煤炭学报, 2019, 44(10): 3049–3057. doi: 10.13225/j.cnki.jccs.2018.1362

    SHEN S W, LI G L, LI D, et al. Crack propagation law of two-hole blasting under different angles of prefabricated fissure [J]. Journal of China Coal Society, 2019, 44(10): 3049–3057. doi: 10.13225/j.cnki.jccs.2018.1362
    [11] 葛进进, 徐颖, 程琳, 等. 深部岩石爆破主裂纹扩展方向与地应力的关系 [J]. 振动与冲击, 2023, 42(4): 54–64. doi: 10.13465/j.cnki.jvs.2023.04.007

    GE J J, XU Y, CHENG L, et al. Relationship between in-situ stress and propagation direction of main cracks induced by blasting [J]. Journal of Vibration and Shock, 2023, 42(4): 54–64. doi: 10.13465/j.cnki.jvs.2023.04.007
    [12] 周飞文. 地应力对煤岩爆破效果的影响研究 [D]. 西安: 西安科技大学, 2020.

    ZHOU F W. Research on the influence of in-situ stress on coal rock blasting effect [D]. Xi’an: Xi’an University of Science and Technology, 2020.
    [13] 蒲传金, 杨鑫, 肖定军, 等. 爆炸载荷下双孔裂纹扩展的数值模拟研究 [J]. 振动与冲击, 2022, 41(15): 300–311. doi: 10.13465/j.cnki.jvs.2022.15.037

    PU C J, YANG X, XIAO D J, et al. Numerical simulation of double-hole crack propagation under explosion load [J]. Journal of Vibration and Shock, 2022, 41(15): 300–311. doi: 10.13465/j.cnki.jvs.2022.15.037
    [14] WANG Z L, WANG H C, WANG J G, et al. Finite element analyses of constitutive models performance in the simulation of blast-induced rock cracks [J]. Computers and Geotechnics, 2021, 135: 104172. doi: 10.1016/j.compgeo.2021.104172
    [15] 李洪超. 岩石RHT模型理论及主要参数确定方法研究 [D]. 北京: 中国矿业大学(北京), 2016.

    LI H C. The study of the rock RHT model and to determine the values of main parameters [D]. Beijing: China University of Mining & Technology (Beijing), 2016.
    [16] 赵星宇, 白春华, 姚箭, 等. 燃料空气炸药爆轰产物JWL状态方程参数计算 [J]. 兵工学报, 2020, 41(10): 1921–1929. doi: 10.3969/j.issn.1000-1093.2020.10.001

    ZHAO X Y, BAI C H, YAO J, et al. Parameters calculation of JWL EOS of FAE detonation products [J]. Acta Armamentarii, 2020, 41(10): 1921–1929. doi: 10.3969/j.issn.1000-1093.2020.10.001
    [17] 刘文博, 史智元, 段东. 单孔条件下高能气体冲击增透过程中裂纹扩展规律的研究 [J]. 煤炭技术, 2019, 38(9): 105–108. doi: 10.13301/j.cnki.ct.2019.09.036

    LIU W B, SHI Z Y, DUAN D. Study on crack propagation of high-energy gas permeability enhancement process under single hole [J]. Coal Technology, 2019, 38(9): 105–108. doi: 10.13301/j.cnki.ct.2019.09.036
    [18] 范勇, 孙金山, 贾永胜,等. 高地应力硐室光面爆破孔间应力相互作用与成缝机制 [J]. 岩石力学与工程学报, 2023, 42(6): 1352–1365. doi: 10.13722/j.cnki.jrme.2022.1127

    FAN Y, SUN J S, JIA Y S, et al. Stress interaction and seam formation mechanism between smooth blasting holes of high ground stress chamber [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(6): 1352–1365. doi: 10.13722/j.cnki.jrme.2022.1127
    [19] YI C P, JOHANSSON D, GREBERG J. Effects of in-situ stresses on the fracturing of rock by blasting [J]. Computers and Geotechnics, 2018, 104: 321–330. doi: 10.1016/j.compgeo.2017.12.004
    [20] LI X H, ZHU Z M, WANG M, et al. Numerical study on the behavior of blasting in deep rock masses [J]. Tunnelling and Underground Space Technology, 2021, 113: 103968. doi: 10.1016/j.tust.2021.103968
    [21] 袁增森, 徐振洋, 潘博, 等. 不同不耦合系数下花岗岩爆破损伤特性的离散元模拟 [J]. 高压物理学报, 2022, 36(1): 015301.

    YUAN Z S, XU Z Y, PAN B, et al. Discrete element simulation of blasting damage characteristics of granite under different decoupling coefficients [J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 015301.
    [22] 莫金汕. 复杂环境下台阶逐孔起爆振动效应与控制研究 [D]. 贵阳: 贵州大学, 2017.

    MO J S. Research on blasting vibration effect and control of step by hole blasting in complex environment [D]. Guiyang: Guizhou University, 2017.
    [23] MURPHY N, ALI M, IVANKOVIC A. Dynamic crack bifurcation in PMMA [J]. Engineering Fracture Mechanics, 2006, 73(16): 2569–2587. doi: 10.1016/j.engfracmech.2006.06.008
    [24] 单仁亮, 黄宝龙, 蔚振廷, 等. 岩巷掘进准直眼掏槽爆破模型试验研究 [J]. 岩石力学与工程学报, 2012, 31(2): 256–264. doi: 10.3969/j.issn.1000-6915.2012.02.004

    SHAN R L, HUANG B L, WEI Z T, et al. Model test of quasi-parallel cut blasting in rock drivage [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 256–264. doi: 10.3969/j.issn.1000-6915.2012.02.004
    [25] 喻军, 林志斌, 李元海. 基于透明岩体的深部隧道围岩变形分析 [J]. 地下空间与工程学报, 2017, 13(4): 943–949.

    YU J, LIN Z B, LI Y H. Analysis on deformation of surrounding rock of deep tunnel based on transparent rock [J]. Chinese Journal of Underground Space and Engineering, 2017, 13(4): 943–949.
    [26] 徐颖, 顾柯柯, 葛进进, 等. 装药不耦合系数对初始地应力下岩石爆破裂纹扩展影响的试验研究 [J]. 爆破, 2022, 39(4): 1–9. doi: 10.3963/j.issn.1001-487X.2022.04.001

    XU Y, GU K K, GE J J, et al. Experimental study on effect of charge decoupling coefficient on crack propagation in rock by blasting under initial in-situ stress [J]. Blasting, 2022, 39(4): 1–9. doi: 10.3963/j.issn.1001-487X.2022.04.001
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  56
  • PDF下载量:  66
出版历程
  • 收稿日期:  2023-04-24
  • 修回日期:  2023-05-15
  • 录用日期:  2023-05-29
  • 网络出版日期:  2023-10-09
  • 刊出日期:  2023-11-07

目录

    /

    返回文章
    返回