基于小波变换的爆炸电磁辐射研究

朱汪平 栗建桥

朱汪平, 栗建桥. 基于小波变换的爆炸电磁辐射研究[J]. 高压物理学报, 2023, 37(5): 054104. doi: 10.11858/gywlxb.20230632
引用本文: 朱汪平, 栗建桥. 基于小波变换的爆炸电磁辐射研究[J]. 高压物理学报, 2023, 37(5): 054104. doi: 10.11858/gywlxb.20230632
ZHU Wangping, LI Jianqiao. Research on Electromagnetic Radiation Generated During Explosion Based on Wavelet Transform[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 054104. doi: 10.11858/gywlxb.20230632
Citation: ZHU Wangping, LI Jianqiao. Research on Electromagnetic Radiation Generated During Explosion Based on Wavelet Transform[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 054104. doi: 10.11858/gywlxb.20230632

基于小波变换的爆炸电磁辐射研究

doi: 10.11858/gywlxb.20230632
基金项目: 国家自然科学基金(12172054,11802026)
详细信息
    作者简介:

    朱汪平(1997-),男,硕士研究生,主要从事爆炸与冲击动力学研究. E-mail:15755429751@163.com

    通讯作者:

    栗建桥(1987-),男,预聘助理教授,主要从事爆炸与冲击动力学研究. E-mail:jqli@bit.edu.cn

  • 中图分类号: O383.1; O441.5

Research on Electromagnetic Radiation Generated During Explosion Based on Wavelet Transform

  • 摘要: 常规爆炸伴随着显著的电磁效应,能够对爆炸测试产生干扰,也可以作为一种无接触手段测试爆炸冲击场。研究爆炸电磁效应具有重要的工程应用价值。采用示波器、天线、高速摄像机组成的测量系统对100、200 g药量RDX爆炸电磁辐射进行了5组不同距离测量实验,记录2 ms的电磁辐射信号并对RDX爆炸产生的电磁辐射进行分析。结果表明,RDX爆炸电磁辐射信号主要分为3种时段:重复性强的30 μs附近典型特征峰;同组重复性强、不同组重复性一般的30~200 μs后续特征峰;200 μs后无明显重复性的脉冲信号。结合爆炸高速影像发现,爆炸电磁辐射信号与爆轰产物状态有较强关联,典型特征峰以及后续特征峰主要是爆轰前期剧烈反应使爆轰产物电离产生的信号。利用天线系数反演电场强度曲线,分析药量、距离与电场强度之间的关系,发现对于典型特征峰:同药量下,电场强度随着距离成指数下降;同距离下,200 g药量比100 g药量爆炸产生的电场强度大。

     

  • 图  测试系统结构(a)及实验现场(b)

    Figure  1.  Test system structure (a)and experimental site(b)

    图  爆炸电磁辐射原始信号

    Figure  2.  Original signal waveform of explosive electromagnetic radiation

    图  RDX爆炸过程的高速影像

    Figure  3.  High-speed images during RDX explosion process

    图  实验组2-通道3通道的原始信号与小波降噪波形对比

    Figure  4.  Comparison of original signal and wavelet denoising waveform in case 2-CH3

    图  RDX爆炸仿真模型

    Figure  5.  Simulation model of RDX explosion

    图  实验组3-通道4 的信号放大波形

    Figure  6.  Amplified signal waveform of case 3-CH4

    图  实验组5-通道2的信号特殊波形

    Figure  7.  Special signal waveform of case 5-CH2

    图  模拟工况下的内能云图

    Figure  8.  Internal energy contour of simulation conditions

    图  1000 μs时的爆轰产物状态:(a) 实验组4,(b) 实验组5,(c) 仿真计算爆轰产物分布

    Figure  9.  Detonation product state at 1000 μs:(a) case 4, (b) case 5, (c) simulated distribution of detonation products

    图  10  小波变换的时频谱

    Figure  10.  Time-frequency spectrum of wavelet transform

    图  11  实验组5-通道4的后续波形小波变换(a)和后续波时域波形(b)

    Figure  11.  Wavelet transform of follow-up peak (a) and time-domain waveform of follow-up peak (b) in case 5-CH4

    图  12  电场强度时域曲线

    Figure  12.  Time-domain curves of electric field strength

    图  13  实验组5-通道4 降噪原始信号与电场强度时域对比

    Figure  13.  Time domain comparison of denoise original signal and electric field strength in case 5-CH4

    图  14  电场强度与距离、药量之间的变化关系

    Figure  14.  Variation of electric field intensity with distance and explosive equivalent

    图  15  距离与电场强度的拟合关系

    Figure  15.  Fitting relationship between distance and electric field strength

    表  1  实验条件

    Table  1.   Experimental condition

    CaseCharge/gChannelDistance/m
    1100CH23.4
    CH32.1
    CH45.2
    2100CH25.0
    CH31.5
    CH42.0
    3100CH25.0
    CH31.5
    CH42.0
    4200CH21.5
    CH35.0
    CH41.5
    5200CH21.5
    CH35.0
    CH41.5
    下载: 导出CSV

    表  2  RDX和空气的模拟参数

    Table  2.   Simulation parameters of RDX and air

    ρ0,RDX/(kg·m−3)pCJ/GPaDCJ/(m·s−1)e0,RDX/(MJ·m−3)ρ0,Air/(kg·m−3)γe0,Air/(MJ·m−3)
    16503282509.21.261.40.196 2
    下载: 导出CSV

    表  3  典型特征峰和后续特征峰的时间参数及幅值

    Table  3.   Time parameters & amplitudes of typical peak and follow-up peak

    Case Channel Typical peak Follow-up peak
    t/μs U/V t/μs U/V
    2 CH2 23.62 −0.0023 39.89 0.0012
    CH3 23.61 −0.0055 39.53 0.0046
    CH4 23.77 −0.0032 39.84 −0.0009
    3 CH2 28.12 −0.0007 140.70 0.0047
    CH3 28.45 −0.0044 140.60 0.0294
    CH4 28.35 −0.0025 141.20 −0.0073
    4 CH2 167.50 −0.0123 198.00 −0.0127
    CH3 167.40 −0.0124 197.90 −0.0118
    CH4 168.00 −0.0145 198.10 −0.0153
    5 CH2 23.82 0.0037 44.96 −0.0010
    CH3 23.84 0.0024 44.74 0.0033
    CH4 23.98 0.0051 44.46 0.0017
    下载: 导出CSV

    表  4  典型特征峰和后续特征峰的频域特性

    Table  4.   Frequency domain characteristics of typical peak and follow-up peak

    Case Channel Typical peak Follow-up peak
    t/μs f/MHz t/μs f/MHz

    2
    CH2 24.0 15 41.1 15
    CH3 24.0 18 41.1 18
    CH4 23.7 14 40.2 22
    3 CH2 28.5 15 145.3 17
    CH3 27.9 8 145.5 10
    CH4 28.2 9 145.4 11
    4 CH2 167.9 12 198.0 17
    CH3 167.4 17 198.0 7
    CH4 168.1 12 198.5 11
    5 CH2 24.0 12 45.0 2
    CH3 23.9 7 45.0 2
    CH4 24.5 7 45.2 2
    下载: 导出CSV

    表  5  特征峰的电场强度

    Table  5.   Electric field intensity of characteristic peak

    Case Channel Typical peak Follow-up peak
    t/μs E/(V·m−1) t/μs E/(V·m−1)
    2 CH2 23.6 −0.0073 39.8 0.0028
    CH3 23.8 −0.0150 39.8 0.0130
    CH4 23.8 −0.0100 40.3 0.0025
    3 CH2 27.9 −0.0019 144.9 0.0170
    CH3 27.6 −0.0154 144.8 0.0504
    CH4 28.2 0.0088 145.4 −0.0229
    4 CH2 167.5 −0.0318 198.0 −0.0326
    CH3 167.9 −0.0354 198.4 −0.0325
    CH4 168.0 −0.0343 198.5 −0.0379
    5 CH2 23.9 −0.0199 44.8 −0.0016
    CH3 23.9 −0.0079 45.0 0.0018
    CH4 24.0 0.0182 45.5 −0.0016
    下载: 导出CSV
  • [1] 舒志强. 核电磁脉冲孔耦合及防护研究 [D]. 西安: 西安电子科技大学, 2009: 1−2.

    SHU Z Q. Analysis of NEMP aperture coupling and protection [D]. Xi’an: Xidian University, 2009: 1−2.
    [2] 李顺. 强电磁脉冲下的冲击波超压测试系统设计 [D]. 太原: 中北大学, 2022: 1−3.

    LI S. Design of shock wave overpressure test system under strong EMP [D]. Taiyuan: North University of China, 2022: 1−3.
    [3] YAO W B, ZHOU H B, HAN R Y, et al. An empirical approach for parameters estimation of underwater electrical wire explosion [J]. Physics of Plasmas, 2019, 9(26): 093502. doi: 10.1063/1.5111518
    [4] 曹景阳, 谢树果, 苏东林. 航天火工品爆炸引起的电磁干扰测量 [J]. 北京航空航天大学学报, 2011, 37(11): 1384–1387, 1394. doi: 10.13700/j.bh.1001-5965.2011.11.015

    CAO J Y, XIE S G, SU D L. Electromagnetic interference caused by aerospace explosives [J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(11): 1384–1387, 1394. doi: 10.13700/j.bh.1001-5965.2011.11.015
    [5] CHEN C, GAO R K, GUO K, et al. Thermoelectric behavior of Al/PTFE reactive materials induced by temperature gradient [J]. International Communications in Heat and Mass Transfer, 2021, 123: 105203. doi: 10.1016/j.icheatmasstransfer.2021.105203
    [6] KOLSKY H. Electromagnetic waves emitted on detonation of explosives [J]. Nature, 1954, 173(4393): 77. doi: 10.1038/173077a0
    [7] COOK M A. The science of high explosives [M]. New York: Reinhold, 1958.
    [8] BORONIN A P, KAPINOS V N, KRENEV S A, et al. Physical mechanism of electromagnetic field generation during the explosion of condensed explosive charges. Survey of literature [J]. Combustion, Explosion and Shock Waves, 1990, 26(5): 597–602. doi: 10.1007/BF00843137
    [9] VAN L V. Electromagnetic emission from chemical explosions [J]. IEEE Transactions on Nuclear Science, 1982, 29(6): 1843–1849. doi: 10.1109/TNS.1982.4336458
    [10] 陈生玉, 孙新利, 钱世平, 等. 化爆引起的电磁辐射 [J]. 爆炸与冲击, 1997, 17(4): 363–368.

    CHEN S Y, SUN X L, QIAN S P, et al. Electromagnetic radiation caused by chemical explosion [J]. Explosion and Shock Waves, 1997, 17(4): 363–368.
    [11] HARLIN J, NEMZEK R. Physical properties of conventional explosives deduced from radio frequency emissions [J]. Propellants, Explosives, Pyrotechnics, 2009, 34(6): 544–550. doi: 10.1002/prep.200800076
    [12] NEMZEK R J, ARROWSMITH S, LAYNE J P. Ten trials at lower slobbovia: searching for repetitive electromagnetic and seismoacoustic signatures in explosions: LA-UR-13-22138 [R]. Los Alamos: Los Alamos National Laboratory, 2013.
    [13] 栗建桥, 马天宝, 宁建国. 爆炸对自然磁场干扰机理 [J]. 力学学报, 2018, 50(5): 1206–1218. doi: 10.6052/0459-1879-18-081

    LI J Q, MA T B, NING J G. Mechanism of explosion-induced disturbance in natural magnetic field [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1206–1218. doi: 10.6052/0459-1879-18-081
    [14] REN H L, CHU Z X, LI J Q. Study on electromagnetic radiation generated during detonation [J]. Propellants, Explosives, Pyrotechnics, 2019, 44(12): 1541–1553. doi: 10.1002/prep.201900118
    [15] 崔元博, 商飞, 孔德仁, 等. 爆炸场电磁辐射特性测试技术研究 [J]. 火工品, 2019(5): 1–5. doi: 10.3969/j.issn.1003-1480.2019.05.001

    CUI Y B, SHANG F, KONG D R, et al. Research on testing technology of electromagnetic radiation characteristics in explosive field [J]. Initiators & Pyrotechnics, 2019(5): 1–5. doi: 10.3969/j.issn.1003-1480.2019.05.001
    [16] 崔元博, 孔德仁, 张学辉, 等. TNT爆炸电磁辐射信号测量及分析 [J]. 含能材料, 2021, 29(3): 241–250. doi: 10.11943/CJEM2020181

    CUI Y B, KONG D R, ZHANG X H, et al. Measurement and analysis of electromagnetic radiation signals of TNT explosives [J]. Chinese Journal of Energetic Materials, 2021, 29(3): 241–250. doi: 10.11943/CJEM2020181
    [17] 崔元博, 孔德仁, 张学辉, 等. 典型炸药爆炸过程中电磁辐射特性分析 [J]. 国防科技大学学报, 2022, 44(6): 70–80. doi: 10.11887/j.cn.202206009

    CUI Y B, KONG D R, ZHANG X H, et al. Analysis of electromagnetic radiation characteristics during typical explosives explosion [J]. Journal of National University of Defense Technology, 2022, 44(6): 70–80. doi: 10.11887/j.cn.202206009
    [18] 张斯薇. 基于小波变换的探地雷达数据去噪方法研究 [D]. 淮南: 安徽理工大学, 2022: 1−3.

    ZHANG S W. Research on denoising method of ground penetrating radar data based on wavelet transform [D]. Huainan: Anhui University of Science & Technology, 2022: 1−3.
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  41
  • PDF下载量:  74
出版历程
  • 收稿日期:  2023-03-29
  • 修回日期:  2023-04-20
  • 录用日期:  2023-04-28
  • 刊出日期:  2023-11-07

目录

    /

    返回文章
    返回