围压作用下伟晶辉长岩的能量特性及破坏模式分析

刘浩杉 张智宇 黄永辉 陈成志 孟佳乐

刘浩杉, 张智宇, 黄永辉, 陈成志, 孟佳乐. 围压作用下伟晶辉长岩的能量特性及破坏模式分析[J]. 高压物理学报, 2023, 37(3): 034103. doi: 10.11858/gywlxb.20220701
引用本文: 刘浩杉, 张智宇, 黄永辉, 陈成志, 孟佳乐. 围压作用下伟晶辉长岩的能量特性及破坏模式分析[J]. 高压物理学报, 2023, 37(3): 034103. doi: 10.11858/gywlxb.20220701
LIU Haoshan, ZHANG Zhiyu, HUANG Yonghui, CHEN Chengzhi, MENG Jiale. Analysis of Energy Characteristics and Failure Mode of Pegmatite Gabbro under Confining Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034103. doi: 10.11858/gywlxb.20220701
Citation: LIU Haoshan, ZHANG Zhiyu, HUANG Yonghui, CHEN Chengzhi, MENG Jiale. Analysis of Energy Characteristics and Failure Mode of Pegmatite Gabbro under Confining Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 034103. doi: 10.11858/gywlxb.20220701

围压作用下伟晶辉长岩的能量特性及破坏模式分析

doi: 10.11858/gywlxb.20220701
基金项目: 国家自然科学基金(52064025);云南省重大科技项目(202202AG050014)
详细信息
    作者简介:

    刘浩杉(1998—),男,硕士研究生,主要从事工程爆破研究. E-mail:1622716889@qq.com

    通讯作者:

    张智宇(1973—),男,硕士,教授,主要从事工程爆破及岩石破碎研究. E-mail:924221851@qq.com

  • 中图分类号: O346

Analysis of Energy Characteristics and Failure Mode of Pegmatite Gabbro under Confining Pressure

  • 摘要: 为探究围压条件下伟晶辉长岩的能量释放与破坏模式的关系,利用霍普金森压杆和LS-DYNA数值模拟软件对伟晶辉长岩开展了不同围压和不同冲击速度下的动态力学性能测试,分析其在不同围压和应变率下的能量释放特征及破坏规律。结果表明:高围压下,试样无明显塑性变形阶段,且围压状态对高应变率下的动态抗压强度有抑制作用,当冲击气压高于0.4 MPa时,动态抗压强度的增长趋势放缓;应变率和围压对伟晶辉长岩的能量与破坏模式有显著影响。随着围压的升高,试样的反射能占比增大,而透射能占比减小;能耗密度随应变率的增加而增大,当应变率为95 s–1时(对应的冲击气压为0.4 MPa)出现拐点,同时高围压下的能耗密度大于低围压下的能耗密度。对于处于围压下的试样,其破坏断面多带有一定的角度,通过LS-DYNA有限元软件模拟了试样在围压下的动态破坏过程,发现中低围压下试样多呈剪切破坏,而高围压下试样有多条剪切裂纹发育贯通,呈复合破坏模式。

     

  • 图  SHPB装置示意图

    Figure  1.  Schematic diagram of SHPB device

    图  (a) 典型试样的入射、反射和透射信号;(b) 典型试样的应力平衡

    Figure  2.  (a) Incident, reflected and transmitted signals of typical specimen; (b) stress balance of typical specimen

    图  不同冲击载荷以及不同围压下试样的应力-应变曲线

    Figure  3.  Stress-strain curves of specimens under different confining pressures and impact loads

    图  不同冲击载荷下围压与动态抗压强度的关系

    Figure  4.  Relation between confining pressure and dynamic compressive strength under different impact loads

    图  不同围压下冲击载荷与动态强度因子的关系

    Figure  5.  Relation between impact load and dynamic increase factor under different confining pressures

    图  不同冲击气压下能量占比随围压的变化

    Figure  6.  Ratios of energies versus confining pressures under different impact pressures

    图  不同冲击气压下反射能占比随围压的变化

    Figure  7.  Reflection energy ratios versus confining pressures under different impact pressures

    图  不同冲击气压下透射能占比随围压的变化

    Figure  8.  Transmitted energy ratios versus confining pressures under different impact pressures

    图  不同围压下应变率与能耗密度的关系

    Figure  9.  Relationship between strain rate and energy consumption density under different confining pressures

    图  10  中低围压下试样的破坏形态

    Figure  10.  Failure modes of the specimens under low and medium confining pressures

    图  11  高围压下试样的破坏形态

    Figure  11.  Failure modes of the specimens under high confining pressures

    图  12  数值模型网格划分

    Figure  12.  Numerical model meshing

    图  13  围压载荷曲线

    Figure  13.  Load curve of confining pressure

    图  14  模拟得到的入射杆和透射杆上的应力波形

    Figure  14.  Stress waveform of the incident bar and transmitted bar obtained by simulation

    图  15  应力-应变曲线的数值模拟与试验结果对比

    Figure  15.  Comparison of the stress-strain curves between the simulated and tested results

    图  16  围压为5 MPa、冲击速度为16.18 m/s时试样的破坏云图

    Figure  16.  Cloud charts of specimen failure under confining pressure of 5 MPa and impact velocity of 16.18 m/s

    图  17  围压为25 MPa、冲击速度为16.39 m/s时试样的破坏云图

    Figure  17.  Cloud charts of specimen failure under confining pressure of 25 MPa and impact velocity of 16.39 m/s

    表  1  伟晶辉长岩的静态力学参数

    Table  1.   Static mechanical parameters of pegmatite gabbro

    ρ/(kg·m−3)fcu/MPaft/MPaE/GPaμ
    334062.24.578.960.26
    下载: 导出CSV

    表  2  冲击载荷下岩样的试验参数

    Table  2.   Test parameters of rock specimens under impact load

    pa/MPaSpecimen No.v/(m·s−1)pc/MPa $\dot \varepsilon$/s−1${\sigma _{\rm d}}$/MPa WI/J WR/J WT/J WS/J${\psi {_{ {\text{DIF} } } } }$
    0.214.51526.4150.5167.368.2142.6416.51
    24.281027.3958.2864.317.2139.2217.88
    34.851529.5266.0568.627.8939.3621.371.06
    44.292030.3267.3464.716.6235.3722.721.08
    54.462530.8170.8161.648.5030.2822.861.14
    0.368.32569.7597.5589.3411.3949.0428.911.57
    78.241066.61111.7285.757.8950.3127.551.80
    88.291567.98120.3386.167.5048.7429.921.93
    97.922063.58138.6582.018.9142.8930.212.23
    108.072562.82144.2684.1110.8639.8733.382.32
    0.41111.19590.97153.01118.2110.9972.8434.382.46
    1211.051097.28159.45113.538.3365.2539.952.56
    1311.281592.48175.79121.5513.2856.7751.502.83
    1411.672093.58189.73123.4222.6245.3555.453.05
    1511.522593.09197.17119.4726.0533.9059.523.17
    0.51614.485108.31160.44146.4515.8679.3951.202.58
    1714.2610110.04164.89148.3817.1578.2153.022.65
    1814.3215116.35181.23141.8819.3569.8752.662.91
    1914.5620107.82194.11140.6015.8569.9054.853.12
    2014.1725109.20203.02158.3924.9653.4479.993.26
    0.62116.185132.33170.09219.4417.59113.4088.452.73
    2216.4710131.52174.30228.7825.39109.1794.222.80
    2316.8015136.14188.17218.5626.8893.5298.163.03
    2416.5320134.50206.18217.6937.9681.1598.583.31
    2516.3925129.29225.17224.3146.7474.49103.083.62
    下载: 导出CSV

    表  3  伟晶辉长岩HJC模型参数

    Table  3.   HJC model parameters of pegmatite gabbro

    ρ/(kg·m3)G/GPaFc/MPaABCNSmaxT/MPapc/MPaμc
    33403.5562.20.520.790.0070.6174.5720.733.33×10–3
    pL/GPaμLK1/GPaK2/GPaK3/GPaD1D2${\dot \varepsilon {_0} }$/s−1fs${\varepsilon {_{\rm {fmin} } } }$
    1.20.177−1692060.041.012.00.004
    下载: 导出CSV
  • [1] 李夕兵, 宫凤强. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望 [J]. 煤炭学报, 2021, 46(3): 846–866. doi: 10.13225/j.cnki.jccs.YT21.0176

    LI X B, GONG F Q. Research progress and prospect of deep mining rock mechanics based on coupled static-dynamic loading testing [J]. Journal of China Coal Society, 2021, 46(3): 846–866. doi: 10.13225/j.cnki.jccs.YT21.0176
    [2] 焦振华, 穆朝民, 王磊, 等. 被动围压下煤冲击压缩动态力学特性试验研究 [J]. 振动与冲击, 2021, 40(21): 185–193. doi: 10.13465/j.cnki.jvs.2021.21.025

    JIAO Z H, MU C M, WANG L, et al. Tests for dynamic mechanical properties of coal impact compression under passive confining pressure [J]. Journal of Vibration and Shock, 2021, 40(21): 185–193. doi: 10.13465/j.cnki.jvs.2021.21.025
    [3] 王伟, 梁渲钰, 张明涛, 等. 动静组合加载下砂岩破坏机制及裂纹密度试验研究 [J]. 岩土力学, 2021, 42(10): 2647–2658. doi: 10.16285/j.rsm.2021.0095

    WANG W, LIANG X Y, ZHANG M T, et al. Experimental study on failure mechanism and crack density of sandstone under combined dynamic and static loading [J]. Rock and Soil Mechanics, 2021, 42(10): 2647–2658. doi: 10.16285/j.rsm.2021.0095
    [4] LI L, KOU X Y, ZHANG G, et al. Experimental study on dynamic compressive behaviors of sand under passive confining pressure [J]. Materials, 2022, 15(13): 4690. doi: 10.3390/ma15134690
    [5] ZHENG D, SONG W D, CAO S, et al. Dynamical mechanical properties and microstructure characteristics of cemented tailings backfill considering coupled strain rates and confining pressures effects [J]. Construction and Building Materials, 2022, 320: 126321. doi: 10.1016/j.conbuildmat.2022.126321
    [6] 刘军忠, 许金余, 赵德辉, 等. 主动围压下地下工程岩石的冲击压缩特性试验研究 [J]. 岩石力学与工程学报, 2011, 30(Suppl 2): 4104–4109.

    LIU J Z, XU J Y, ZHAO D H, et al. Experimental study of shock compression properties of underground engineering rock under active confining pressure [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Suppl 2): 4104–4109.
    [7] 王泽东, 许金余, 吕晓聪, 等. 围压作用下岩石冲击破坏与变形特性试验研究 [J]. 地下空间与工程学报, 2011, 7(2): 311–316, 334. doi: 10.3969/j.issn.1673-0836.2011.02.018

    WANG Z D, XU J Y, LYU X C, et al. Research on characteristic of impact damage and distortion of rock under confining pressure [J]. Chinese Journal of Underground Space and Engineering, 2011, 7(2): 311–316, 334. doi: 10.3969/j.issn.1673-0836.2011.02.018
    [8] 李鸿儒, 王志亮, 郝士云. 主动围压下花岗岩动态力学特性与本构模型研究 [J]. 水文地质工程地质, 2018, 45(3): 49–55. doi: 10.16030/j.cnki.issn.1000-3665.2018.03.06

    LI H R, WANG Z L, HAO S Y. A study of the dynamic properties and constitutive model of granite under active confining pressures [J]. Hydrogeology & Engineering Geology, 2018, 45(3): 49–55. doi: 10.16030/j.cnki.issn.1000-3665.2018.03.06
    [9] GAO H, ZHAI Y. Numerical investigation of the concrete-rock combined body influence of inclined interface on dynamic characteristics and failure behaviors [J]. Arabian Journal of Geosciences, 2022, 15(5): 435. doi: 10.1007/S12517-022-09749-1
    [10] 马泗洲, 刘科伟, 郭腾飞, 等. 煤岩组合体巴西劈裂动态力学特征数值分析 [J]. 高压物理学报, 2022, 36(5): 054204. doi: 10.11858/gywlxb.20220589

    MA S Z, LIU K W, GUO T F, et al. Numerical analysis of dynamic mechanical characteristics of Brazilian splitting of coal-rock combination bodies [J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054204. doi: 10.11858/gywlxb.20220589
    [11] 李祥龙, 李强, 王建国, 等. 胶结充填体冲击破坏及损伤演化数值模拟研究 [J]. 北京理工大学学报, 2022, 42(7): 733–740. doi: 10.15918/j.tbit1001-0645.2021.189

    LI X L, LI Q, WANG J G, et al. Numerical simulation research on impact failure and damage evolution of cemented backfill [J]. Transactions of Beijing Institute of Technology, 2022, 42(7): 733–740. doi: 10.15918/j.tbit1001-0645.2021.189
    [12] 程树范, 高睿, 曾亚武, 等. 冲击作用下煤岩动态破坏机理的FDEM模拟研究 [J]. 振动与冲击, 2022, 41(19): 136–143. doi: 10.13465/j.cnki.jvs.2022.19.018

    CHENG S F, GAO R, ZENG Y W, et al. FDEM simulation of dynamic failure mechanism of coal rock under impact [J]. Journal of Vibration and Shock, 2022, 41(19): 136–143. doi: 10.13465/j.cnki.jvs.2022.19.018
    [13] YANG L, XU W B, YILMAZ E, et al. A combined experimental and numerical study on the triaxial and dynamic compression behavior of cemented tailings backfill [J]. Engineering Structures, 2020, 219: 110957. doi: 10.1016/j.engstruct.2020.110957
    [14] 袁伟, 金解放, 梁晨, 等. 混凝土主动围压SHPB试验波形数值分析 [J]. 长江科学院院报, 2018, 35(7): 141–146. doi: 10.11988/ckyyb.20170142

    YUAN W, JIN J F, LIANG C, et al. Numerical analysis on waveforms in split Hopkinson pressure bar tests of concrete under active confining pressures [J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(7): 141–146. doi: 10.11988/ckyyb.20170142
    [15] 桑登峰, 廖强, 林宇轩, 等. 围压对珊瑚岩动态力学行为影响 [J]. 北京理工大学学报, 2022, 42(6): 588–595. doi: 10.15918/j.tbit1001-0645.2021.295

    SANG D F, LIAO Q, LIN Y X, et al. Study on dynamic behavior of coral-reef limestone under impact loading with confining pressure [J]. Transactions of Beijing Institute of Technology, 2022, 42(6): 588–595. doi: 10.15918/j.tbit1001-0645.2021.295
    [16] 方士正, 杨仁树, 李炜煜, 等. 非静水压条件下深部岩石能量耗散规律及破坏特征试验研究 [J/OL]. 煤炭科学技术, 2022: 1−13 [2022−11−30]. https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.13199/j.cnki.cst.2022-1504. DOI: 10.13199/j.cnki.cst.2022-1504.

    FANG S Z, YANG R S, LI W Y, et al. Research on energy dissipation and dynamic failure characteristics of rock under non-hydrostatic pressure condition [J/OL]. Coal Science and Technology, 2022: 1−13 [2022−11−30]. https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.13199/j.cnki.cst.2022−1504. DOI: 10.13199/j.cnki.cst.2022-1504.
    [17] 凌天龙, 吴帅峰, 刘殿书, 等. 砂岩Holmquist-Johnson-Cook模型参数确定 [J]. 煤炭学报, 2018, 43(8): 2211–2216. doi: 10.13225/j.cnki.jccs.2017.1305

    LING T L, WU S F, LIU D S, et al. Determination of Holmquist-Johnson-Cook model parameters for sandstone [J]. Journal of China Coal Society, 2018, 43(8): 2211–2216. doi: 10.13225/j.cnki.jccs.2017.1305
    [18] 张社荣, 宋冉, 王超, 等. 碾压混凝土HJC动态本构模型修正及数值验证 [J]. 振动与冲击, 2019, 38(12): 25–31. doi: 10.13465/j.cnki.jvs.2019.12.004

    ZHANG S R, SONG R, WANG C, et al. Modification of a dynamic constitutive model–HJC model for roller-compacted concrete and numerical verification [J]. Journal of Vibration and Shock, 2019, 38(12): 25–31. doi: 10.13465/j.cnki.jvs.2019.12.004
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  229
  • HTML全文浏览量:  59
  • PDF下载量:  37
出版历程
  • 收稿日期:  2022-12-05
  • 修回日期:  2022-12-29
  • 网络出版日期:  2023-04-08
  • 刊出日期:  2023-06-05

目录

    /

    返回文章
    返回