A Numerical Study on the Effect of Ignition Pattern on Wavelet Features in Rotating Detonation Waves

PENG Ao ZHANG Jingwen CHEN Xianfeng SUN Xuxu

彭澳, 张静雯, 陈先锋, 孙绪绪. 点火源参数对旋转爆轰波特征影响的数值模拟[J]. 高压物理学报, 2022, 36(6): 062301. doi: 10.11858/gywlxb.20220593
引用本文: 彭澳, 张静雯, 陈先锋, 孙绪绪. 点火源参数对旋转爆轰波特征影响的数值模拟[J]. 高压物理学报, 2022, 36(6): 062301. doi: 10.11858/gywlxb.20220593
PENG Ao, ZHANG Jingwen, CHEN Xianfeng, SUN Xuxu. A Numerical Study on the Effect of Ignition Pattern on Wavelet Features in Rotating Detonation Waves[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 062301. doi: 10.11858/gywlxb.20220593
Citation: PENG Ao, ZHANG Jingwen, CHEN Xianfeng, SUN Xuxu. A Numerical Study on the Effect of Ignition Pattern on Wavelet Features in Rotating Detonation Waves[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 062301. doi: 10.11858/gywlxb.20220593

A Numerical Study on the Effect of Ignition Pattern on Wavelet Features in Rotating Detonation Waves

doi: 10.11858/gywlxb.20220593
Funds: National Key R&D Program of China (2021YFB4000901); Fundamental Research Funds for the Central Universities (223161001); Opening Fund of the Key Laboratory of Civil Aviation Thermal Disaster Prevention and Emergency of Civil Aviation University of China (RZH2021-KF-05); Opening Fund of the State Key Laboratory of Fire Science of University of Science and Technology of China (HZ2022-KF-09)
More Information
    Author Bio:

    PENG Ao (1999-), male, bachelor, major in high pressure behavior of gas explosion. E-mail: 317038@whut.edu.cn

    Corresponding author: SUN Xuxu (1994-), male, doctor, associate professor, major in high pressure behavior of gas explosion. E-mail: xuxusun@whut.edu.cn
  • 摘要: 采用欧拉方程和两步诱导反应模型,详细研究了点火源参数对旋转爆轰波特征的影响规律,详细考虑了点火源尺寸、数量和间距的影响。利用提前计算得到的C-J爆轰波作为点火源,改变C-J爆轰波的大小便可得到不同尺寸的点火源。数值模拟结果表明:旋转爆轰波特征与点火源参数密切相关;仅可观察到双波和三波模式;旋转爆轰波数量与点火源尺寸之间呈现非线性关系。对于一个点火源,在相同的点火源宽度下,双波模式出现的概率超过80%,而三波模式的出现是一个随机现象。旋转爆轰波的形成机理可总结如下:第一个旋转爆轰波来源于入射C-J爆轰波的直接起爆,后续的旋转爆轰波则起源于压缩波与可燃气体射流之间的相互作用。旋转爆轰波特征与点火源数量及间距密切相关,它们之间的关系也都呈现非线性。

     

  • Figure  1.  Rayleigh lines and Hugoniot curve in p-V diagram[1]

    Figure  2.  Schematic diagram of the initiation zone in combustor

    Figure  3.  Density field from RDW numerical results for the ignition size of L1=210 and L2=280 and resolutions of 10 (a) and 20 (b)

    Figure  4.  Density fields of RDWs for one ignition zone with different sizes

    Figure  5.  Temperature fields of RDWs at different instants for L1=150 and L2=40

    Figure  6.  Schlieren records of RDWs at different instants for L1=150 and L2=40

    Figure  7.  Quantity of RDWs for the ignition zone with different sizes

    Figure  8.  Pressure records of RDWs for various ignition patterns

    Figure  9.  Probabilities for two-wave and three-wave modes

    Figure  10.  Density fields of RDWs for the case of two ignition sources

    Figure  11.  Density fields of RDWs for the case of three ignition sources

    Figure  12.  Density fields of RDWs for d=40 in the case of three ignition sources

    Table  1.   Stoichiometric hydrogen-air mixture parameters and corresponding ZND C-J detonation properties

    QTSEIERKIKR$ \gamma $
    25.31005.73536.5200 TS1.0000 TS1.05383.74001.3200
    下载: 导出CSV
  • [1] ZHOU R, WU D, WANG J P. Progress of continuously rotating detonation engines [J]. Chinese Journal of Aeronautics, 2016, 29(1): 15–29. doi: 10.1016/j.cja.2015.12.006
    [2] WOLAŃSKI P. Application of the continuous rotating detonation to gas turbine [J]. Applied Mechanics and Materials, 2015, 782: 3–12. doi: 10.4028/www.scientific.net/AMM.782.3
    [3] ANAND V, GUTMARK E. Rotating detonation combustors and their similarities to rocket instabilities [J]. Progress in Energy and Combustion Science, 2019, 73: 182–234. doi: 10.1016/j.pecs.2019.04.001
    [4] WOLAŃSKI P. Detonative propulsion [J]. Proceedings of the Combustion Institute, 2013, 34(1): 125–158. doi: 10.1016/j.proci.2012.10.005
    [5] YI T H, LOU J, TURANGAN C, et al. Propulsive performance of a continuously rotating detonation engine [J]. Journal of Propulsion and Power, 2011, 27(1): 171–181. doi: 10.2514/1.46686
    [6] HISHIDA M, FUJIWARA T, WOLANSKI P. Fundamentals of rotating detonations [J]. Shock Waves, 2009, 19(1): 1–10. doi: 10.1007/s00193-008-0178-2
    [7] SCHWER D A, KAILASANATH K. Numerical study of the effects of engine size on rotating detonation engines [C]//Proceedings of the 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando: AIAA, 2011: 581.
    [8] ZHOU R, WANG J P. Numerical investigation of shock wave reflections near the head ends of rotating detonation engines [J]. Shock Waves, 2013, 23(5): 461–472. doi: 10.1007/s00193-013-0440-0
    [9] KATTA V R, CHO K Y, HOKE J L, et al. Effect of increasing channel width on the structure of rotating detonation wave [J]. Proceedings of the Combustion Institute, 2019, 37(3): 3575–3583. doi: 10.1016/j.proci.2018.05.072
    [10] ANAND V, ST GEORGE A, DRISCOLL R, et al. Characterization of instabilities in a rotating detonation combustor [J]. International Journal of Hydrogen Energy, 2015, 40(46): 16649–16659. doi: 10.1016/j.ijhydene.2015.09.046
    [11] YANG C L, WU X S, MA H, et al. Experimental research on initiation characteristics of a rotating detonation engine [J]. Experimental Thermal and Fluid Science, 2016, 71: 154–163. doi: 10.1016/j.expthermflusci.2015.10.019
    [12] ZHOU S B, MA H, LIU D K, et al. Experimental study of a hydrogen-air rotating detonation combustor [J]. International Journal of Hydrogen Energy, 2017, 42(21): 14741–14749. doi: 10.1016/j.ijhydene.2017.04.214
    [13] TENG H H, ZHOU L, YANG P F, et al. Numerical investigation of wavelet features in rotating detonations with a two-step induction-reaction model [J]. International Journal of Hydrogen Energy, 2020, 45(7): 4991–5001. doi: 10.1016/j.ijhydene.2019.12.063
    [14] YAMADA T, HAYASHI K, TSUBOI N, et al. Numerical analysis of threshold of limit detonation in rotating detonation engine [C]//Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando: AIAA, 2010: 153.
    [15] TSUBOI N, WATANABE Y, KOJIMA T, et al. Numerical estimation of the thrust performance on a rotating detonation engine for a hydrogen-oxygen mixture [J]. Proceedings of the Combustion Institute, 2015, 35(2): 2005–2013. doi: 10.1016/j.proci.2014.09.010
    [16] SHAO Y T, LIU M, WANG J P. Numerical investigation of rotating detonation engine propulsive performance [J]. Combustion Science and Technology, 2010, 182(11/12): 1586–1597.
    [17] SHAO Y T, WANG J P. Change in continuous detonation wave propagation mode from rotating detonation to standing detonation [J]. Chinese Physics Letters, 2010, 27(3): 034705. doi: 10.1088/0256-307X/27/3/034705
    [18] SHAO Y T, LIU M, WANG J P. Continuous detonation engine and effects of different types of nozzle on its propulsion performance [J]. Chinese Journal of Aeronautics, 2010, 23(6): 647–652. doi: 10.1016/S1000-9361(09)60266-1
    [19] ZHOU R, WANG J P. Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines [J]. Combustion and Flame, 2012, 159(12): 3632–3645. doi: 10.1016/j.combustflame.2012.07.007
    [20] SCHWER D, KAILASANATH K. Numerical investigation of the physics of rotating-detonation-engines [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2195–2202. doi: 10.1016/j.proci.2010.07.050
    [21] SCHWER D, KAILASANATH K. Fluid dynamics of rotating detonation engines with hydrogen and hydrocarbon fuels [J]. Proceedings of the Combustion Institute, 2013, 34(2): 1991–1998. doi: 10.1016/j.proci.2012.05.046
    [22] UEMURA Y, HAYASHI A K, ASAHARA M, et al. Transverse wave generation mechanism in rotating detonation [J]. Proceedings of the Combustion Institute, 2013, 34(2): 1981–1989. doi: 10.1016/j.proci.2012.06.184
    [23] LIU Y, ZHOU W J, YANG Y J, et al. Numerical study on the instabilities in H2-air rotating detonation engines [J]. Physics of Fluids, 2018, 30(4): 046106. doi: 10.1063/1.5024867
    [24] TORO E F. Riemann solvers and numerical methods for fluid dynamics [M]. 3rd edtion. Berlin: Springer, 2009.
    [25] KAILASANATH K. Recent developments in the research on rotating-detonation-wave engines [C]//Proceedings of the 55th AIAA Aerospace Sciences Meeting. Grapevine: AIAA, 2017: 784.
    [26] ZHAO M J, CLEARY M J, ZHANG H W. Combustion mode and wave multiplicity in rotating detonative combustion with separate reactant injection [J]. Combustion and Flame, 2021, 225: 291–304. doi: 10.1016/j.combustflame.2020.11.001
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  73
  • PDF下载量:  49
出版历程
  • 收稿日期:  2022-05-23
  • 修回日期:  2022-06-06
  • 录用日期:  2022-06-06
  • 网络出版日期:  2022-10-21
  • 刊出日期:  2022-12-05

目录

    /

    返回文章
    返回