煤岩组合体巴西劈裂动态力学特征数值分析

马泗洲 刘科伟 郭腾飞 黄晓辉 周占星

马泗洲, 刘科伟, 郭腾飞, 黄晓辉, 周占星. 煤岩组合体巴西劈裂动态力学特征数值分析[J]. 高压物理学报, 2022, 36(5): 054204. doi: 10.11858/gywlxb.20220589
引用本文: 马泗洲, 刘科伟, 郭腾飞, 黄晓辉, 周占星. 煤岩组合体巴西劈裂动态力学特征数值分析[J]. 高压物理学报, 2022, 36(5): 054204. doi: 10.11858/gywlxb.20220589
MA Sizhou, LIU Kewei, GUO Tengfei, HUANG Xiaohui, ZHOU Zhanxing. Numerical Analysis of Dynamic Mechanical Characteristics of Brazilian Splitting of Coal-Rock Combination Bodies[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054204. doi: 10.11858/gywlxb.20220589
Citation: MA Sizhou, LIU Kewei, GUO Tengfei, HUANG Xiaohui, ZHOU Zhanxing. Numerical Analysis of Dynamic Mechanical Characteristics of Brazilian Splitting of Coal-Rock Combination Bodies[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054204. doi: 10.11858/gywlxb.20220589

煤岩组合体巴西劈裂动态力学特征数值分析

doi: 10.11858/gywlxb.20220589
基金项目: 国家自然科学基金(51974360)
详细信息
    作者简介:

    马泗洲(1995-),男,硕士研究生,主要从事隧道爆破、岩土体稳定性分析及数值计算研究. E-mail:195512091@csu.edu.cn

    通讯作者:

    刘科伟(1982-),男,博士,副教授,主要从事岩土工程灾害预测、稳定性及可靠性分析研究. E-mail:kewei_liu@csu.edu.cn

  • 中图分类号: O358

Numerical Analysis of Dynamic Mechanical Characteristics of Brazilian Splitting of Coal-Rock Combination Bodies

  • 摘要: 为探究冲击荷载条件下煤岩组合工程体的动力学响应特征,通过室内试验测得单一煤、岩的基本力学参数,为煤、岩体HJC模型材料参数的选取提供依据。在材料模型有效性验证的基础上,采用LS-DYNA显式动力学软件研究了不同冲击荷载、冲击方向及加载角度条件下煤岩组合体动态劈裂过程中的应力波传播规律、变形破坏过程及破坏特征。结果表明:(1) 在不同冲击方向作用下,R-C与C-R组合体的应力波波形基本相同,但应力幅值略有差异,对比发现入射波幅值基本相等,但R-C组合体的反射波幅值偏大,透射波应力幅值偏小,随着冲击荷载的增大,差异性逐渐减小;(2) 在不同冲击荷载作用下,煤岩组合体在劈裂过程中以煤体部分破坏为主,且组合体中煤体部分总是在交界面远处先产生宏观裂隙,而岩体部分则多在交界面近处先起裂破坏;(3) 当冲击荷载较小时,C-R与R-C组合体的破坏形态基本相同,以拉伸、剪切破坏为主,随着冲击荷载的增大,组合体的破坏程度加剧,破坏形态的差异性也更明显;(4) 提出了一种以单元损伤失效数量为评价指标的方法来定量分析组合体的破碎程度,从数据的变化规律发现,组合体在加载角度为45°时破坏最剧烈。

     

  • 图  常见煤岩层复合结构工程体示意图

    Figure  1.  Schematic diagram of common coal-rock composite structure

    图  SHPB数值模型及试样分组示意图

    Figure  2.  SHPB numerical model and sample grouping diagram

    图  HJC材料模型本构方程描述

    Figure  3.  Constitutive equation of HJC model

    图  冲击荷载下应力波加载方式及材料模型验证

    Figure  4.  Verification of stress loading mode and material model under impact loading

    图  煤岩组合体的动态应力平衡验证

    Figure  5.  Dynamic stress equilibrium verification of coal-rock combination bodies

    图  不同冲击荷载下C-R与R-C组合体的应力波传播特征

    Figure  6.  Stress waves of C-R and R-C combination bodies under different impact loads

    图  煤岩组合体动态劈裂应力波传播过程

    Figure  7.  Stress wave propagation process of coal-rock mass during dynamic splitting

    图  煤岩组合体力学模型及受力分析示意图

    Figure  8.  Mechanical model and stress analysis diagram of coal-rock mass

    图  不同加载角度下煤岩组合体的变形破坏过程(100 MPa冲击荷载)

    Figure  9.  Deformation and failure process of coal-rock mass under different loading angles (impact loading of 100 MPa)

    图  10  不同冲击荷载下C-R与R-C组合体的变形破坏特征

    Figure  10.  Deformation and failure characteristics of C-R and R-C combination bodies under different impact loads

    图  11  煤岩组合体损伤破坏程度的变化规律

    Figure  11.  Damage degree of coal-rock mass

    表  1  煤的HJC模型参数

    Table  1.   Parameters of HJC model for coal

    ρ/(kg·m–3)G/GPafc/MPaABCNSmaxD1D2
    15940.589.00.4000.7000.0050.5007.0000.0311.00
    T/MPapc/MPaμc/10–3pl/GPaμlK1/GPaK2/GPaK3/GPa$ \dot \varepsilon $0/s−1${\varepsilon \rm_{f,\min } }$
    1.863.00.81.00.12181−1702081.000.005
    下载: 导出CSV

    表  2  岩的HJC模型参数

    Table  2.   Parameters of HJC model for rock

    ρ/(kg·m–3)G/GPafc/MPaABCNSmaxD1D2
    267010.81350.7621.650.0090.744.000.0451.00
    T/MPapc/MPaμc/10–3pl/GPaμlK1/GPaK2/GPaK3/GPa$ \dot \varepsilon $0/s−1${\varepsilon \rm_{f,min } }$
    7.4845.272.91.00.10185−1502081.000.005
    下载: 导出CSV
  • [1] 谢和平. 深部岩体力学与开采理论研究进展 [J]. 煤炭学报, 2019, 44(5): 1283–1305. doi: 10.13225/j.cnki.jccs.2019.6038

    XIE H P. Research review of the state key research development program of China: deep rock mechanics and mining theory [J]. Journal of China Coal Society, 2019, 44(5): 1283–1305. doi: 10.13225/j.cnki.jccs.2019.6038
    [2] CHEN Y L, ZUO J P, LIU D J, et al. Deformation failure characteristics of coal-rock combined body under uniaxial compression: experimental and numerical investigations [J]. Bulletin of Engineering Geology and the Environment, 2019, 78(5): 3449–3464. doi: 10.1007/s10064-018-1336-0
    [3] LI W F, BAI J B, CHENG J Y, et al. Determination of coal-rock interface strength by laboratory direct shear tests under constant normal load [J]. International Journal of Rock Mechanics and Mining Science, 2015, 77: 60–67. doi: 10.1016/j.ijrmms.2015.03.033
    [4] 左建平, 谢和平, 吴爱民, 等. 深部煤岩单体及组合体的破坏机制与力学特性研究 [J]. 岩石力学与工程学报, 2011, 30(1): 84–92.

    ZUO J P, XIE H P, WU A M, et al. Investigation on failure mechanisms and mechanical behaviors of deep coal-rock single body and combined body [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(1): 84–92.
    [5] 苗磊刚, 牛园园, 石必明. 不同应变率下岩-煤-岩组合体冲击动力试验研究 [J]. 振动与冲击, 2019, 38(17): 137–143. doi: 10.13465/j.cnki.jvs.2019.17.018

    MIAO L G, NIU Y Y, SHI B M. Impact dynamic tests for rock-coal-rock combination under different strain rates [J]. Journal of Vibration and Shock, 2019, 38(17): 137–143. doi: 10.13465/j.cnki.jvs.2019.17.018
    [6] LIU X S, TAN Y L, NING J G, et al. Mechanical properties and damage constitutive model of coal in coal-rock combined body [J]. International Journal of Rock Mechanics and Mining Science, 2018, 110: 140–150. doi: 10.1016/j.ijrmms.2018.07.020
    [7] 张泽天, 刘建锋, 王璐, 等. 组合方式对煤岩组合体力学特性和破坏特征影响的试验研究 [J]. 煤炭学报, 2012, 37(10): 1677–1681. doi: 10.13225/j.cnki.jccs.2012.10.021

    ZHANG Z T, LIU J F, WANG L, et al. Effects of combination mode on mechanical properties and failure characteristics of the coal-rock combinations [J]. Journal of China Coal Society, 2012, 37(10): 1677–1681. doi: 10.13225/j.cnki.jccs.2012.10.021
    [8] 曹吉胜, 戴前伟, 周岩, 等. 考虑界面倾角及分形特性的组合煤岩体强度及破坏机制分析 [J]. 中南大学学报(自然科学版), 2018, 49(1): 175–182. doi: 10.11817/j.issn.1672-7207.2018.01.023

    CAO J S, DAI Q W, ZHOU Y, et al. Failure mechanism and strength of coal-rock combination bodies considering dip angles and fractal characteristics of interface [J]. Journal of Central South University (Science and Technology), 2018, 49(1): 175–182. doi: 10.11817/j.issn.1672-7207.2018.01.023
    [9] 郭东明, 左建平, 张毅, 等. 不同倾角组合煤岩体的强度与破坏机制研究 [J]. 岩土力学, 2011, 32(5): 1333–1339. doi: 10.3969/j.issn.1000-7598.2011.05.009

    GUO D M, ZUO J P, ZHANG Y, et al. Research on strength and failure mechanism of deep coal-rock combination bodies of different inclined angles [J]. Rock and Soil Mechanics, 2011, 32(5): 1333–1339. doi: 10.3969/j.issn.1000-7598.2011.05.009
    [10] 付斌, 周宗红, 王友新, 等. 煤岩组合体破坏过程RFPA2D数值模拟 [J]. 大连理工大学学报, 2016, 56(2): 132–139. doi: 10.7511/dllgxb201602004

    FU B, ZHOU Z H, WANG Y X, et al. Numerical simulation of coal-rock combination body failure process by RFPA2D [J]. Journal of Dalian University of Technology, 2016, 56(2): 132–139. doi: 10.7511/dllgxb201602004
    [11] 陈光波, 李谭, 杨磊, 等. 不同煤岩比例及组合方式的组合体力学特性及破坏机制 [J]. 采矿与岩层控制工程学报, 2021, 3(2): 84–94.

    CHEN G B, LI T, YANG L, et al. Mechanical properties and failure mechanism of combined bodies with different coal-rock ratios and combinations [J]. Journal of Mining and Strata Control Engineering, 2021, 3(2): 84–94.
    [12] 肖晓春, 樊玉峰, 吴迪, 等. 组合煤岩破坏过程能量耗散特征及冲击危险评价 [J]. 岩土力学, 2019, 40(11): 4203–4212. doi: 10.16285/j.rsm.2018.1925

    XIAO X C, FAN Y F, WU D, et al. Energy dissipation feature and rock burst risk assessment in coal-rock combinations [J]. Rock and Soil Mechanics, 2019, 40(11): 4203–4212. doi: 10.16285/j.rsm.2018.1925
    [13] 解北京, 严正. 基于层叠模型组合煤岩体动态力学本构模型 [J]. 煤炭学报, 2019, 44(2): 463–472.

    XIE B J, YAN Z. Dynamic mechanical constitutive model of combined coal-rock based on overlay model [J]. Journal of China Coal Society, 2019, 44(2): 463–472.
    [14] 窦林名, 陆菜平, 牟宗龙, 等. 组合煤岩冲击倾向性特性试验研究 [J]. 采矿与安全工程学报, 2006, 23(1): 43–46. doi: 10.3969/j.issn.1673-3363.2006.01.009

    DOU L M, LU C P, MOU Z L, et al. Rock burst tendency of coal-rock combinations sample [J]. Journal of Mining & Safety Engineering, 2006, 23(1): 43–46. doi: 10.3969/j.issn.1673-3363.2006.01.009
    [15] 杨磊, 高富强, 王晓卿. 不同强度比组合煤岩的力学响应与能量分区演化规律 [J]. 岩石力学与工程学报, 2020, 39(Suppl 2): 3297–3305. doi: 10.13722/j.cnki.jrme.2020.0456

    YANG L, GAO F Q, WANG X Q. Mechanical response and energy partition evolution of coal-rock combinations with different strength ratios [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Suppl 2): 3297–3305. doi: 10.13722/j.cnki.jrme.2020.0456
    [16] ZHANG H, LU C P, LIU B, et al. Numerical investigation on crack development and energy evolution of stressed coal-rock combination [J]. International Journal of Rock Mechanics and Mining Science, 2020, 133: 104417. doi: 10.1016/j.ijrmms.2020.104417
    [17] LI X B, ZOU Y, ZHOU Z L. Numerical simulation of the rock SHPB test with a special shape striker based on the discrete element method [J]. Rock Mechanics and Rock Engineering, 2014, 47: 1693–1709. doi: 10.1007/s00603-013-0484-6
    [18] XU H, WEN H M. A computational constitutive model for concrete subjected to dynamic loadings [J]. International Journal of Impact Engineering, 2016, 91: 116–125. doi: 10.1016/j.ijimpeng.2016.01.003
    [19] 巫绪涛, 孙善飞, 李和平. 用HJC本构模型模拟混凝土SHPB实验 [J]. 爆炸与冲击, 2009, 29(2): 137–142. doi: 10.3321/j.issn:1001-1455.2009.02.005

    WU X T, SUN S F, LI H P. Numerical simulation of SHPB tests for concrete by using HJC model [J]. Explosion and Shock Waves, 2009, 29(2): 137–142. doi: 10.3321/j.issn:1001-1455.2009.02.005
    [20] 陈星明, 刘彤, 肖正学. 混凝土HJC模型抗侵彻参数敏感性数值模拟研究 [J]. 高压物理学报, 2012, 26(3): 313–318. doi: 10.11858/gywlxb.2012.03.011

    CHEN X M, LIU T, XIAO Z X. Numerical simulation study of parameter sensitivity analysis on concrete HJC model [J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 313–318. doi: 10.11858/gywlxb.2012.03.011
    [21] 张嘉凡, 高壮, 程树范, 等. 煤岩HJC模型参数确定及液态CO2爆破特性研究 [J]. 岩石力学与工程学报, 2021, 40(Suppl 1): 2633–2642.

    ZHANG J F, GAO Z, CHENG S F, et al. Parameters determination of coal-rock HJC model and research on blasting characteristics by liquid CO2 [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(Suppl 1): 2633–2642.
    [22] 张若棋, 丁育青, 汤文辉, 等. 混凝土HJC、RHT本构模型的失效强度参数 [J]. 高压物理学报, 2011, 25(1): 15–22. doi: 10.11858/gywlxb.2011.01.003

    ZHANG R Q, DING Y Q, TANG W H, et al. The failure strength parameters of HJC and RHT concrete constitutive models [J]. Chinese Journal of High Pressure Physics, 2011, 25(1): 15–22. doi: 10.11858/gywlxb.2011.01.003
    [23] 凌天龙, 吴帅峰, 刘殿书, 等. 砂岩Holmquist-Johnson-Cook模型参数确定 [J]. 煤炭学报, 2018, 43(8): 2211–2216.

    LING T L, WU S F, LIU D S, et al. Determination of Holmquist-Johnson-Cook model parameters sandstone [J]. Journal of China Coal Society, 2018, 43(8): 2211–2216.
    [24] 鲜学福, 谭学术. 层状岩体破坏机理 [M]. 重庆: 重庆大学出版社, 1989: 155.

    XIAN X F, TAN X S. Failure mechanism of layered rock mass [M]. Chongqing: Chongqing University Press, 1989: 155.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  13
  • PDF下载量:  17
出版历程
  • 收稿日期:  2022-05-18
  • 修回日期:  2022-05-25
  • 网络出版日期:  2022-09-20
  • 刊出日期:  2022-10-11

目录

    /

    返回文章
    返回