活性元对低附带毁伤弹药的近场超压增强效应

杨秉妍 范瑞军 江自生 皮爱国 王金英

杨秉妍, 范瑞军, 江自生, 皮爱国, 王金英. 活性元对低附带毁伤弹药的近场超压增强效应[J]. 高压物理学报, 2022, 36(6): 065101. doi: 10.11858/gywlxb.20220568
引用本文: 杨秉妍, 范瑞军, 江自生, 皮爱国, 王金英. 活性元对低附带毁伤弹药的近场超压增强效应[J]. 高压物理学报, 2022, 36(6): 065101. doi: 10.11858/gywlxb.20220568
YANG Bingyan, FAN Ruijun, JIANG Zisheng, PI Aiguo, WANG Jinying. Effect of Near-Field Overpressure Enhancement of Reactive Material on Low Collateral Damage Ammunition[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 065101. doi: 10.11858/gywlxb.20220568
Citation: YANG Bingyan, FAN Ruijun, JIANG Zisheng, PI Aiguo, WANG Jinying. Effect of Near-Field Overpressure Enhancement of Reactive Material on Low Collateral Damage Ammunition[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 065101. doi: 10.11858/gywlxb.20220568

活性元对低附带毁伤弹药的近场超压增强效应

doi: 10.11858/gywlxb.20220568
详细信息
    作者简介:

    杨秉妍(1998-),女,硕士,主要从事结构与冲击动力学研究. E-mail:3120190250@bit.edu.cn

    通讯作者:

    皮爱国(1977-),男,博士,教授,主要从事爆炸冲击研究. E-mail:aiguo_pi@bit.edu.cn

    王金英(1979-),女,博士,副教授,主要从事配方设计及测试研究. E-mail:wjywzhy@126.com

  • 中图分类号: O389; TJ55

Effect of Near-Field Overpressure Enhancement of Reactive Material on Low Collateral Damage Ammunition

  • 摘要: 为了实现低附带毁伤弹药的近场爆炸威力增强效应,提出在分装式低附带毁伤弹药的重金属颗粒嵌层中加入活性元成分,以期增强近场超压与比冲量。开展了不同含量活性元的静爆实验,利用自由场压力测试系统测得爆炸后近场及中远场的冲击波压力曲线。结果表明:在重金属颗粒嵌层中加入一定含量的活性元后,冲击波超压峰值和比冲量在37.5倍装药直径处分别提高31.6%和21.3%。根据实验结果,利用数值模拟确定了Miller反应速率模型参数,讨论了活性元后燃反应能量释放规律以及活性元组分反应度随时间的变化关系,在充分燃烧的理想情况下,活性元二次燃烧持续时间可达300 ms,且活性元含量区间极有可能存在最优配比。研究结果可为分装式低附带毁伤武器的近场冲击波区域增强效应及其工程化设计提供参考。

     

  • 图  不同装药方式

    Figure  1.  Diagram of different charging methods

    图  低附带弹药战斗部模型

    Figure  2.  Model of low collateral ammunition warhead

    图  实验现场布置

    Figure  3.  Layout of experiment site

    图  冲击波超压峰值曲线

    Figure  4.  Curves of the peak overpressure of shock wave

    图  冲击波特征参数随距离的变化

    Figure  5.  Change of the characteristic parameters of shock wave with distance

    图  计算模型示意图

    Figure  6.  Schematic diagram of the calculation model

    图  冲击波超压峰值(Δp)与运动距离(X)随时间(t)的变化曲线

    Figure  7.  Change curves of peak overpressure of shock wave and movement distance with time

    图  含10%活性元时反应度随时间的变化曲线

    Figure  8.  Reactivity versus time curve withthe mass fraction of 10% RM

    图  37.5倍装药直径处的冲击波超压时程曲线

    Figure  9.  Time history of the overpressure of shock wave at 37.5 times charge diameter

    图  10  50倍装药直径处的冲击波超压时程曲线

    Figure  10.  Time history of the overpressure of shock wave at 50 times charge diameter

    表  1  活性重金属颗粒嵌层配方

    Table  1.   Embedded formulation of reactive heavy metal particle

    Serial numberMass fraction of heavy metal particle embedded/%WC diameter/µm
    WCRMAdditive
    LCD-190010 150–250
    LCD-28210 8150–250
    下载: 导出CSV

    表  2  JWL状态方程参数

    Table  2.   Parameters of JWL equation of state

    Explosives and RMA/GPaB/GPaR1R2ωQ/(kJ·g−1)E/(kJ·g−1)
    Composition B/0% Al524.637.6784.21.10.340 4.95
    Composition B/10% Al524.637.6784.21.10.3415.674.95
    下载: 导出CSV

    表  3  冲击波超压峰值数值模拟结果与实验对比

    Table  3.   Comparison of numerical simulation results of the peak overpressure of shock wave with experiments

    R/mΔp/kPaδ/%
    ΔpeΔps
    1.5169.2163.63.3
    2.0 86.0 89.54.4
    3.0 40.0 42.83.3
    下载: 导出CSV
  • [1] SIRAK M. Air Force focuses on new low-collateral-damage warhead for small bomb [N]. Defense Daily, 2006, 230(10): 1.
    [2] 刘意. 高密度惰性金属炸药爆轰与粒子流形成过程研究 [D]. 北京: 北京理工大学, 2015: 7–37.

    LIU Y. Detonation of dense inert metal explosive and the formation of particles flow [D]. Beijing: Beijing Institute of Technology, 2015: 7–37.
    [3] 申超. 重金属粉末嵌层CFRP壳体内爆下低附带毁伤特性表征 [D]. 北京: 北京理工大学, 2015: 9–22.

    SHEN C. The low collateral damage characterization of CFRP shell structure with heavy mental powder embedded as a layer under implosion [D]. Beijing: Beijing Institute of Technology, 2015: 9–22.
    [4] FROST D L, ORNTHANALAI C, ZAREI Z, et al. Particle momentum effects from the detonation of heterogeneous explosives [J]. Journal of Applied Physics, 2007, 101(11): 113529. doi: 10.1063/1.2743912
    [5] FROST D L, GRÉGOIRE Y, PETEL O, et al. Particle jet formation during explosive dispersal of solid particles [J]. Physics of Fluids, 2012, 24(9): 091109. doi: 10.1063/1.4751876
    [6] XUE K, YU Q Q, BAI C H. Dual fragmentation modes of the explosively dispersed granular materials [J]. The European Physical Journal E, 2014, 37(9): 88. doi: 10.1140/epje/i2014-14088-y
    [7] 黄德雨, 王坚茹, 陈智刚, 等. 炸药配比对陶瓷低附带毁伤战斗部能量输出的影响 [J]. 弹箭与制导学报, 2012, 32(1): 108–110, 130. doi: 10.3969/j.issn.1673-9728.2012.01.032

    HUANG D Y, WANG J R, CHEN Z G, et al. Influence of explosive radio on energy output of ceramic low collateral damage warhead [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(1): 108–110, 130. doi: 10.3969/j.issn.1673-9728.2012.01.032
    [8] 霍奕宇, 王坚茹. 某新型破片材料在低附带毁伤弹药中的应用研究 [J]. 科学技术与工程, 2015, 15(35): 175–178. doi: 10.3969/j.issn.1671-1815.2015.35.031

    HUO Y Y, WANG J R. Application of the research on the low collateral damage ammunition about new materials fragment [J]. Science Technology and Engineering, 2015, 15(35): 175–178. doi: 10.3969/j.issn.1671-1815.2015.35.031
    [9] 霍奕宇, 王坚茹, 陈智刚, 等. 碳纤维壳体壁厚对陶瓷球初速及性能的影响 [J]. 爆破器材, 2016, 45(1): 30–33, 38. doi: 10.3969/j.issn.1001-8352.2016.01.007

    HUO Y Y, WANG J R, CHEN Z G, et al. Influence of thickness of carbon fiber shell on initial velocity and capability of ceramic ball [J]. Explosive Materials, 2016, 45(1): 30–33, 38. doi: 10.3969/j.issn.1001-8352.2016.01.007
    [10] 李俊承, 樊壮卿, 梁斌, 等. 一种低附带弹药金属颗粒定向加载技术 [J]. 爆炸与冲击, 2018, 38(4): 869–875. doi: 10.11883/bzycj-2016-0376

    LI J C, FAN Z Q, LIANG B, et al. Experimental study on directed loading metal particles of low collateral damage ammunition [J]. Explosion and Shock Waves, 2018, 38(4): 869–875. doi: 10.11883/bzycj-2016-0376
    [11] 刘俊, 姚文进, 郑宇, 等. 低附带毁伤弹药的炸药/钨粉质量比对钨粉抛撒特性的影响 [J]. 含能材料, 2015, 23(3): 258–264. doi: 10.11943/j.issn.1006-9941.2015.03.011

    LIU J, YAO W J, ZHENG Y, et al. Effect of explosive/tungsten powder mass ratio for LCD ammunition on dispersal characteristics of tungsten powder [J]. Chinese Journal of Energetic Materials, 2015, 23(3): 258–264. doi: 10.11943/j.issn.1006-9941.2015.03.011
    [12] 左腾, 皮爱国. 亚毫米级金属微粒的爆炸驱动: 模型与数值计算 [J]. 兵工学报, 2016, 37(Suppl 2): 165–170.

    ZUO T, PI A G. Detonation driving of submillimeter-sized metal particles: model and numerical calculation [J]. Acta Armamentarii, 2016, 37(Suppl 2): 165–170.
    [13] 杨世全, 孙传杰, 钱立新, 等. 非金属壳体低附带战斗部实验与破片飞散分析 [J]. 高压物理学报, 2018, 32(4): 045103. doi: 10.11858/gywlxb.20170573

    YANG S Q, SUN C J, QIAN L X, et al. Experimentation and fragment flight analysis of low-collateral-damage warhead with nonmetal shell [J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 045103. doi: 10.11858/gywlxb.20170573
    [14] 冯吉奎, 皮爱国, 刘源, 等. 爆炸驱动亚毫米级金属颗粒群的飞散特性 [J]. 高压物理学报, 2019, 33(6): 065104. doi: 10.11858/gywlxb.20190741

    FENG J K, PI A G, LIU Y, et al. Scattering characteristics of sub-millimeter metal particle group driven by explosion [J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 065104. doi: 10.11858/gywlxb.20190741
    [15] 仲倩, 王伯良, 邓金榜. 化学活性材料对温压炸药冲击波参数影响规律研究 [C]//中国力学大会2011暨钱学森诞辰100周年纪念大会论文集. 哈尔滨: 中国力学学会, 2011.

    ZHONG Q, WANG B L, DENG J B. Study on effect rule of chemically active material on blast wave of thermobaric explosive[C]//Proceedings of the Chinese Society of Theoretical and Applied Mechanics. Harbin: Chinese Society of Mechanics, 2011.
    [16] 王晓峰, 冯晓军. 温压炸药设计原则探讨 [J]. 含能材料, 2016, 24(5): 418–420. doi: 10.11943/j.issn.1006-9941.2016.05.00X

    WANG X F, FENG X J. Discussion on the design principle for thermobaric explosives [J]. Chinese Journal of Energetic Materials, 2016, 24(5): 418–420. doi: 10.11943/j.issn.1006-9941.2016.05.00X
    [17] JIANG C, LU G, MAO L, et al. Effects of aluminum content on the energy output characteristics of CL-20-based aluminized explosives in a closed vessel [J]. Shock Waves, 2021, 31(2): 141–151. doi: 10.1007/s00193-021-01001-1
    [18] 隋树元, 王树山. 终点效应学 [M]. 北京: 国防工业出版社, 2000.

    SUI S Y, WANG S S. Terminal effects [M]. Beijing: National Defense Industry Press, 2000.
    [19] 田少康, 李席, 刘波, 等. 一种RDX基温压炸药的JWL-Miller状态方程研究 [J]. 含能材料, 2017, 25(3): 226–231. doi: 10.11943/j.issn.1006-9941.2017.03.009

    TIAN S K, LI X, LIU B, et al. Study on JWL-miller equation of state of RDX-based thermobaric explosive [J]. Chinese Journal of Energetic Materials, 2017, 25(3): 226–231. doi: 10.11943/j.issn.1006-9941.2017.03.009
    [20] 张宝銔, 张庆明, 黄风雷. 爆轰物理学 [M]. 北京: 兵器工业出版社, 2001.

    ZHANG B P, ZHANG Q M, HUANG F L. Detonation physics [M]. Beijing: Weapon Industry Press, 2001.
    [21] MILLER P J, GUIRGUIS R H. Experimental study and model calculations of metal combustion in Al/Ap underwater explosives [J]. MRS Online Proceedings Library, 1992, 296(1): 299–304. doi: 10.1557/PROC-296-299
    [22] 张奇, 白春华, 刘庆明, 等. 一次引爆燃料空气炸药及其爆炸效应研究 [J]. 实验力学, 2000, 15(4): 448–453. doi: 10.3969/j.issn.1001-4888.2000.04.014

    ZHANG Q, BAI C H, LIU Q M, et al. Investigation on single igniting fuel-air explosive and its explosion effect [J]. Journal of Experimental Mechanics, 2000, 15(4): 448–453. doi: 10.3969/j.issn.1001-4888.2000.04.014
    [23] 黄菊, 王伯良, 仲倩, 等. 温压炸药能量输出结构的初步研究 [J]. 爆炸与冲击, 2012, 32(2): 164–168. doi: 10.11883/1001-1455(2012)02-0164-05

    HUANG J, WANG B L, ZHONG Q, et al. A preliminary investigation on energy output structure of a thermobaric explosive [J]. Explosion and Shock Waves , 2012, 32(2): 164–168. doi: 10.11883/1001-1455(2012)02-0164-05
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  185
  • HTML全文浏览量:  139
  • PDF下载量:  41
出版历程
  • 收稿日期:  2022-04-20
  • 修回日期:  2022-05-19
  • 录用日期:  2022-08-15
  • 网络出版日期:  2022-11-04
  • 刊出日期:  2022-12-05

目录

    /

    返回文章
    返回