弹丸几何形状对石墨烯动态力学响应的影响

张涛 蒋俊 孙伟福

张涛, 蒋俊, 孙伟福. 弹丸几何形状对石墨烯动态力学响应的影响[J]. 高压物理学报, 2022, 36(6): 064204. doi: 10.11858/gywlxb.20220552
引用本文: 张涛, 蒋俊, 孙伟福. 弹丸几何形状对石墨烯动态力学响应的影响[J]. 高压物理学报, 2022, 36(6): 064204. doi: 10.11858/gywlxb.20220552
ZHANG Tao, JIANG Jun, SUN Weifu. Effect of Projectile Geometry on Dynamic Mechanical Response of Graphene[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064204. doi: 10.11858/gywlxb.20220552
Citation: ZHANG Tao, JIANG Jun, SUN Weifu. Effect of Projectile Geometry on Dynamic Mechanical Response of Graphene[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064204. doi: 10.11858/gywlxb.20220552

弹丸几何形状对石墨烯动态力学响应的影响

doi: 10.11858/gywlxb.20220552
基金项目: 国家自然科学基金(11802027)
详细信息
    作者简介:

    张 涛(1996-),男,硕士研究生,主要从事材料与结构冲击动力学研究.E-mail:fancyohzt@163.com

    通讯作者:

    孙伟福(1984-),男,博士,教授,主要从事冲击动力学与防护材料研究.E-mail:weifu.sun@bit.edu.cn

  • 中图分类号: O385

Effect of Projectile Geometry on Dynamic Mechanical Response of Graphene

  • 摘要: 为探究弹丸几何形状对石墨烯动态力学响应的影响,考虑了不同形状以及同种形状下不同结构尺寸比例的两种弹丸设计方案,借助分子动力学模拟进行计算,通过表征弹丸的剩余速度、动能损耗以及石墨烯自身破坏的状况和应力波的传播状态研究石墨烯受到冲击时的响应。结果表明:不同形状弹丸冲击石墨烯的剩余速度和动能消耗随冲击速度的变化大致可分为3个区域,其中球形和半球形弹丸冲击情况类似,柱形弹丸的差异性较大;柱形弹丸对石墨烯的破坏要强于球形和半球形弹丸,分形理论模型能够较好地量化描述石墨烯破孔样貌;柱形弹丸自身平头部产生的“屏障效应”能够较好地解释其侵彻单层和双层石墨烯的弹道极限速度分别小于和接近球形和半球形冲击时的弹道极限速度;同种形状下,弹丸结构尺寸比例增大,弹丸侵彻能力增强,但尺寸比增大所带来的优势不具有持续增强性。

     

  • 图  球形、半球形和柱形弹丸示意图

    Figure  1.  Schematic diagram of spherical, hemispherical and cylindrical projectiles

    图  5种不同结构尺寸比例(L/R)的半球形弹丸示意图

    Figure  2.  Schematic diagram of five kinds hemispherical projectiles with different length-radius ratios (L/R)

    图  冲击模型示意图(红色部分为冲击区域,黄色部分为固定区域,蓝色部分为球形弹丸)

    Figure  3.  Schematic diagram of impact model (The red part is the impact area, the yellow part is the fixed area and the blue part is the spherical projectile.)

    图  弹丸的剩余速度与动能损耗随初始速度的变化趋势

    Figure  4.  Variations of residual velocity and kinetic energy consumption of projectiles with initial velocity

    图  在6.0 km/s冲击速度下双层石墨烯碳原子的速度分布

    Figure  5.  Velocity distribution of double-layer graphene carbon particles under the impact velocity of 6.0 km/s

    图  不同形状弹丸以不同速度冲击时脱离时刻双层石墨烯z向位置云图

    Figure  6.  Contour plots of z-direction position of double-layer graphene impacted by different shapes of projectiles with different velocities at the time of separation

    图  不同形状弹丸冲击下破孔参数AS11随初始速度的变化

    Figure  7.  Morphological parameters A and S11 of the hole as a function of initial impact velocity ranging under the impact of different shapes of projectiles

    图  3种不同形状弹丸冲击不同层数(1~4层)石墨烯的剩余速度随初始速度的变化

    Figure  8.  Variations of residual velocity with initial velocity of three shape projectiles impacting different layers (1–4 layers) of graphene

    图  不同形状弹丸冲击双层石墨烯时弹丸受力随时间的变化

    Figure  9.  Change of force with time on projectile impacting double-layer graphene

    图  10  柱形与半球形弹丸以3.5 km/s冲击双层石墨烯时破坏时刻的样貌侧视图和仰视图

    Figure  10.  Side view and bottom view of cylindrical and hemispherical projectiles impacting double-layer graphene at 3.5 km/s

    图  11  不同时刻柱形弹丸冲击石墨烯的z向位置云图

    Figure  11.  z-direction position contour plots of graphene under the impact of cylindrical projectile at different times

    图  12  柱形弹丸冲击下不同时刻石墨烯中剪切应力分布云图

    Figure  12.  Distribution of shear stress in graphene at different times under cylindrical projectile impact

    图  13  不同尺寸比例半球形弹丸冲击双层石墨烯时剩余速度和动能损耗随冲击速度的变化

    Figure  13.  Variations of residual velocity and kinetic energy consumption with initial velocity ofdifferent length-radius ratios projectiles impacting double-layer graphene

    图  14  不同L/R的弹丸冲击10层石墨烯的侵彻深度随初速度的变化

    Figure  14.  Variations of penetration depth of ten-layer graphene with initial impact velocity of different length-radius ratios projectiles

    表  1  不同形状弹丸冲击不同层数石墨烯的弹道极限速度

    Table  1.   Ballistic limit velocities of different shape projectiles impacting different layers of graphene

    Shape of projectilevbl/(m·s−1)
    Single-layerDouble-layerTriple-layerQuadruple-layer
    Spherical3360389042304470
    Hemispherical3330374041804450
    Cylindrical2950386046605250
    下载: 导出CSV
  • [1] BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene [J]. Solid State Communications, 2008, 146(9/10): 351–355. doi: 10.1016/j.ssc.2008.02.024
    [2] BALANDIN A A, GHOSH S, BAO W Z, et al. Superior thermal conductivity of single-layer graphene [J]. Nano Letters, 2008, 8(3): 902–907. doi: 10.1021/nl0731872
    [3] LEE C, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321(5887): 385–388. doi: 10.1126/science.1157996
    [4] 陈济桁. 石墨烯在防弹领域的发展现状和产业应用简析 [J]. 新材料产业, 2021(4): 44–48. doi: 10.19599/j.issn.1008-892x.2021.04.012
    [5] 武岳, 王旭东, 刘迪, 等. 直升机陶瓷复合装甲发展现状及新型材料应用前景 [J]. 航空材料学报, 2019, 39(5): 34–44. doi: 10.11868/j.issn.1005-5053.2019.000097

    WU Y, WANG X D, LIU D, et al. Development and application analysis of ceramic composites armor for helicopter [J]. Journal of Aeronautical Materials, 2019, 39(5): 34–44. doi: 10.11868/j.issn.1005-5053.2019.000097
    [6] LIOU J C, JOHNSON N L. Risks in space from orbiting debris [J]. Science, 2006, 311(5759): 340–341. doi: 10.1126/science.112133
    [7] LEE J H, LOYA P E, LOU J, et al. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration [J]. Science, 2014, 346(6213): 1092–1096. doi: 10.1126/science.1258544
    [8] AKTULGA H M, FOGARTY J C, PANDIT S A, et al. Parallel reactive molecular dynamics: numerical methods and algorithmic techniques [J]. Parallel Computing, 2012, 38(4/5): 245–259. doi: 10.1016/j.parco.2011.08.005
    [9] XIA K, ZHAN H F, HU D A, et al. Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile [J]. Scientific Reports, 2016, 6: 33139. doi: 10.1038/srep33139
    [10] HAQUE B Z, CHOWDHURY S C, GILLESPIE J W JR. Molecular simulations of stress wave propagation and perforation of graphene sheets under transverse impact [J]. Carbon, 2016, 102: 126–140. doi: 10.1016/j.carbon.2016.02.033
    [11] QIU Y, ZHANG Y, ADEMILOYE A S, et al. Molecular dynamics simulations of single-layer and rotated double-layer graphene sheets under a high velocity impact by fullerene [J]. Computational Materials Science, 2020, 182: 109798. doi: 10.1016/j.commatsci.2020.109798
    [12] MENG Z X, SINGH A, QIN X, et al. Reduced ballistic limit velocity of graphene membranes due to cone wave reflection [J]. Extreme Mechanics Letters, 2017, 15: 70–77. doi: 10.1016/j.eml.2017.06.001
    [13] 吴凯, 王涛, 沈杰. 不同结构穿甲弹弹头侵彻金属靶板性能分析 [J]. 机械设计与制造工程, 2014, 43(1): 31–34. doi: 10.3969/j.issn.2095-509X.2014.01.008

    WU K, WANG T, SHEN J. The performance analysis of different structure metal target board resistance to armour-piercing bullet [J]. Manufacturing Information Engineering of China, 2014, 43(1): 31–34. doi: 10.3969/j.issn.2095-509X.2014.01.008
    [14] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1–19. doi: 10.1006/jcph.1995.1039
    [15] STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool [J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. doi: 10.1088/0965-0393/18/1/015012
    [16] HUMPHREY W, DALKE A, SCHULTEN K. VMD: visual molecular dynamics [J]. Journal of Molecular Graphics, 1996, 14(1): 33–38. doi: 10.1016/0263-7855(96)00018-5
    [17] STUART S J, TUTEIN A B, HARRISON J A. A reactive potential for hydrocarbons with intermolecular interactions [J]. The Journal of Chemical Physics, 2000, 112(14): 6472–6486. doi: 10.1063/1.481208
    [18] BRENNER D W, SHENDEROVA O A, HARRISON J A, et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J]. Journal of Physics: Condensed Matter, 2002, 14(44): 783–802. doi: 10.1088/0953-8984/14/4/312
    [19] 韩同伟, 贺鹏飞, 王健, 等. 单层石墨烯薄膜拉伸变形的分子动力学模拟 [J]. 新型炭材料, 2010, 25(4): 261–266.

    HAN T W, HE P F, WANG J, et al. Molecular dynamics simulation of a single graphene sheet under tension [J]. New Carbon Materials, 2010, 25(4): 261–266.
    [20] ZHANG H, LIU Z W, ZHONG X C, et al. Lennard-Jones interatomic potentials for the allotropes of carbon [EB/OL]. (2018−07−01). https://arxiv.org/abs/1805.10614.
    [21] 涂新斌, 王思敬. 图像分析的颗粒形状参数描述 [J]. 岩土工程学报, 2004, 26(5): 659–662. doi: 10.3321/j.issn:1000-4548.2004.05.018

    TU X B, WANG S J. Particle shape descriptor in digital image analysis [J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 659–662. doi: 10.3321/j.issn:1000-4548.2004.05.018
    [22] MENG Z X, HAN J L, QIN X, et al. Spalling-like failure by cylindrical projectiles deteriorates the ballistic performance of multi-layer graphene plates [J]. Carbon, 2018, 126: 611–619. doi: 10.1016/j.carbon.2017.10.068
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  83
  • PDF下载量:  39
出版历程
  • 收稿日期:  2022-03-31
  • 修回日期:  2022-04-21
  • 刊出日期:  2022-12-05

目录

    /

    返回文章
    返回