动能块超高速碰撞多层防护结构的毁伤特性数值模拟

杨玉好 郭香华 张庆明

杨玉好, 郭香华, 张庆明. 动能块超高速碰撞多层防护结构的毁伤特性数值模拟[J]. 高压物理学报, 2022, 36(4): 044204. doi: 10.11858/gywlxb.20220533
引用本文: 杨玉好, 郭香华, 张庆明. 动能块超高速碰撞多层防护结构的毁伤特性数值模拟[J]. 高压物理学报, 2022, 36(4): 044204. doi: 10.11858/gywlxb.20220533
YANG Yuhao, GUO Xianghua, ZHANG Qingming. Numerical Simulation of Damage Characteristics of Multi-Layer Protective Structure under Hypervelocity Impact of Kinetic Energy Block[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044204. doi: 10.11858/gywlxb.20220533
Citation: YANG Yuhao, GUO Xianghua, ZHANG Qingming. Numerical Simulation of Damage Characteristics of Multi-Layer Protective Structure under Hypervelocity Impact of Kinetic Energy Block[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044204. doi: 10.11858/gywlxb.20220533

动能块超高速碰撞多层防护结构的毁伤特性数值模拟

doi: 10.11858/gywlxb.20220533
详细信息
    作者简介:

    杨玉好(1996-),男,硕士研究生,主要从事材料与结构冲击动力学研究.E-mail:15952102687@163.com

    通讯作者:

    郭香华(1974-),男,副教授,主要从事爆炸与冲击仿真、材料与结构冲击动力学研究.E-mail:guoxh@bit.edu.cn

  • 中图分类号: O385

Numerical Simulation of Damage Characteristics of Multi-Layer Protective Structure under Hypervelocity Impact of Kinetic Energy Block

  • 摘要: 基于有限元-光滑粒子流体动力学(FEM-SPH)自适应算法,采用有限元软件LS-DYNA对动能块超高速碰撞多层防护结构的毁伤特性进行了数值模拟,并结合量纲分析方法,分析了动能块的质量和撞击速度对多层防护结构穿孔特性的影响。结果表明:保持其他参数不变,在所研究的质量和撞击速度范围内,所有的动能块均可以穿透全部17层铝合金板,并在靶后形成碎片云,在撞击过程中动能块和铝合金板内部出现层裂现象;第1层铝合金板的穿孔直径随着动能块质量的增大近似呈幂函数增大,拟合误差在5%以内;第2层铝合金板的穿孔直径随着撞击速度的提升也呈幂函数增大,拟合误差在10%以内;碎片云的头部速度随着撞击速度的提升近似呈线性增大。研究结果可为后期分析靶后碎片云的质量与速度分布、建立冲击载荷模型奠定基础。

     

  • 图  FEM-SPH自适应算法的计算过程[19]

    Figure  1.  Calculation process of FEM-SPH adaptive algorithm[19]

    图  15.9 µs时刻碎片云数值模拟与实验结果[24]的比较

    Figure  2.  Comparison between numerical simulation and experimental result[24] of debris cloud at 15.9 µs

    图  数值模拟的有限元模型

    Figure  3.  Finite element model of numerical simulation

    图  工况A1~A7的数值模拟结果

    Figure  4.  Numerical simulation results of different conditions (Case A1–A7)

    图  动能块和铝合金板内部的冲击波传播(剖视图)

    Figure  5.  Propagation of shock wave in kinetic energy block and aluminum alloy plate (sectional view)

    图  各层铝合金板的穿孔直径统计(工况A1~A7)

    Figure  6.  Statistics of perforation diameter of each layer of aluminum alloy plate (Case A1–A7)

    图  工况B1~B5的数值模拟结果

    Figure  7.  Numerical simulation results of different conditions (Case B1−B5)

    图  碎片云头部速度随动能块速度的变化曲线

    Figure  8.  Variation of debris cloud head velocity with impact velocity

    图  各层铝合金板的穿孔直径统计(工况B1~B5)

    Figure  9.  Statistics of perforation diameter of each layer of aluminum alloy plate (Case B1−B5)

    表  1  钨合金和铝合金的材料模型参数[1922]

    Table  1.   Material parameters of aluminum and tungsten alloy[1922]

    Material$\, \rho $/(g·cm3)$ \,\mu $E/GPaG/GPaA/GPaB/GPan
    Tungsten alloy17.0000.28409.6 160.0 1.5060.1770.12
    Al2024-T351 2.7850.3373.427.60.2650.4260.34
    MaterialCmTm/KTr/KD1D2D3
    Tungsten alloy0.0161.01723 3001.500
    Al2024-T3510.0151.07753001.000
    MaterialD4D5c/(km·s−1)S1${\gamma }{_{0}}$a${\sigma }{_{\mathrm{p} }}$/GPa
    Tungsten alloy004.0291.2371.540.1343.5
    Al2024-T351005.3281.3382.000.8752.6
    下载: 导出CSV

    表  2  15.9 μs时的数值模拟结果与实验数据[24]的比较

    Table  2.   Comparison between numerical simulation and experimental result[24] at 15.9 μs

    Methoddh/cmva/(m·s−1)vr/(m·s−1)Ld/cmdd/cm
    Simulation2.00532018608.166.57
    Experiment1.89529619138.116.56
    Error/%5.820.452.770.620.15
    下载: 导出CSV

    表  3  数值模拟工况

    Table  3.   Conditions of numerical simulation

    GroupNo.mp/gdp/mmvp/(km·s−1) GroupNo.mp/gdp/mmvp/(km·s−1)
    A158.163 B158.163
    24516.963258.164
    38520.983358.165
    412523.843458.166
    516526.163558.167
    620528.123
    725030.043
    下载: 导出CSV

    表  4  第1层铝合金板的穿孔直径

    Table  4.   Perforation diameter of the first layer of aluminum alloy plate

    Case${d}{_{\mathrm{p} } }$/mm${d}{_{\mathrm{h},\mathrm{m}\mathrm{a}\mathrm{x} }}$/mm${d}{_{\mathrm{h},\mathrm{m}\mathrm{i}\mathrm{n} } }$/mm${d}{_{\mathrm{h} } }$/mm${d}{_{\mathrm{h} } }/{d}{_{\mathrm{p} } }$
    A18.1622.7222.6822.702.7819
    A216.9639.0839.0039.042.3019
    A320.9847.1245.9846.552.2188
    A423.8451.3450.9651.152.1456
    A526.1656.8056.7256.762.1697
    A628.1258.5057.7458.122.0669
    A730.0462.0859.6260.852.0256
    下载: 导出CSV

    表  5  第1层铝合金穿孔直径的计算数据与数值模拟结果的对比

    Table  5.   Comparison between calculation and simulation of perforation diameter of the first layer of aluminum alloy plate

    mp/g${d} {_{\mathrm{h} } }/{d}{_{\mathrm{p} } }$Error/%
    Calc.Sim.
    252.44372.4835−1.60
    652.26832.23201.63
    1052.18542.09824.16
    1452.13122.05713.60
    1852.09122.1155−1.15
    2252.05942.02551.67
    下载: 导出CSV

    表  6  第2层铝合金板的穿孔直径(${d}_{\mathrm{p}}$=8.16 mm)

    Table  6.   Perforation diameter of the second layer of aluminum alloy plate (${d}_{\mathrm{p}}$=8.16 mm)

    Case${v}{_{\mathrm{p} } }$/(km·s−1)${d}{_{\mathrm{h},\mathrm{m}\mathrm{a}\mathrm{x} } }$/mm${d}{_{\mathrm{h},\mathrm{m}\mathrm{i}\mathrm{n} } }$/mm${d}{_{\mathrm{h} } }$/mm${d}{_{\mathrm{h} }}/{d}{_{\mathrm{p} } }$
    B1336.5036.4836.494.4718
    B2446.0845.9446.015.6385
    B3554.8652.8453.856.5993
    B4661.1657.8459.507.2917
    B5765.9461.5463.747.8113
    下载: 导出CSV

    表  7  第2层铝合金板穿孔直径的计算结果与数值模拟结果的对比

    Table  7.   Comparison between calculation and simulation of perforation diameter of the second layer of aluminum alloy plate

    ${v}{_{\mathrm{p} } }$/(km·s−1)${d}{_{\mathrm{h} }}/{d}{_{\mathrm{p} }}$Error/%
    Calc.Sim.
    3.55.06704.74266.84
    4.55.98886.0515−1.04
    5.56.84056.48775.44
    6.57.64147.36273.79
    下载: 导出CSV
  • [1] 张羽. 层间距对多冲击结构超高速撞击损伤特性影响研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012.

    ZHANG Y. Hypervelocity impact damage characteristics research on the impact of protection spacing on multi-shock shields [D]. Harbin: Harbin Institute of Technology, 2012.
    [2] 江增荣, 李向荣, 李世才, 等. 预制破片对战斗部冲击起爆数值模拟 [J]. 弹道学报, 2009, 21(1): 9–13.

    JIANG Z R, LI X R, LI S C, et al. Numerical simulation on shock initiation of performed fragment to warhead [J]. Journal of Ballistics, 2009, 21(1): 9–13.
    [3] 梁斌, 冯高鹏, 魏雪婷. 多枚破片冲击引爆带盖板炸药数值模拟分析 [J]. 弹箭与制导学报, 2013, 33(6): 62–66, 69. doi: 10.3969/j.issn.1673-9728.2013.06.018

    LIANG B, FENG G P, WEI X T. Numerical simulation on shock initiation of composition explosive of cover board subjected to multi-fragment [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(6): 62–66, 69. doi: 10.3969/j.issn.1673-9728.2013.06.018
    [4] GUPTA N K, MADHU V. An experimental study of normal and oblique impact of hard-core projectile on single and layered plates [J]. International Journal of Impact Engineering, 1997, 19(5/6): 395–414. doi: 10.1016/S0734-743X(97)00001-8
    [5] 董永香, 冯顺山, 段相杰. 弹丸斜侵彻多层金属间隔靶特性研究 [J]. 中北大学学报 (自然科学版), 2010, 31(3): 221–226. doi: 10.3969/j.issn.1673-3193.2010.03.004

    DONG Y X, FENG S S, DUAN X J. Oblique penetration characteristics of multi-layered spaced targets by steel projectiles [J]. Journal of North University of China (Natural Science Edition), 2010, 31(3): 221–226. doi: 10.3969/j.issn.1673-3193.2010.03.004
    [6] 吕珮毅, 张允航, 张曌. 破片形状、着靶姿态对侵彻多层靶影响的数据模拟研究 [J]. 国外电子测量技术, 2021, 40(1): 27–31. doi: 10.19652/j.cnki.femt.2002343

    LYU P Y, ZHANG Y H, ZHANG Z. Numerical simulation research on the influence of fragment shape and posture on penetrating multi-layer target [J]. Foreign Electronic Measurement Technology, 2021, 40(1): 27–31. doi: 10.19652/j.cnki.femt.2002343
    [7] 屈科佛, 姚勇, 邓勇军, 等. 多层靶板抗不同形状高速破片侵彻性能研究 [J]. 兵器装备工程学报, 2020, 41(2): 6–9. doi: 10.11809/bqzbgcxb2020.02.002

    QU K F, YAO Y, DENG Y J, et al. Numerical study on effect of fragment shape on penetration resistance of multi-layered target [J]. Journal of Ordnance Equipment Engineering, 2020, 41(2): 6–9. doi: 10.11809/bqzbgcxb2020.02.002
    [8] DENG Y F, ZHANG W, CAO Z S. Experimental investigation on the ballistic resistance of monolithic and multi-layered plates against ogival-nosed rigid projectiles impact [J]. Materials & Design, 2013, 44: 228–239. doi: 10.1016/j.matdes.2012.06.048
    [9] 赵小峰. 破片质量对钨合金破片侵彻威力的影响 [J]. 科学技术与工程, 2020, 20(10): 3967–3971. doi: 10.3969/j.issn.1671-1815.2020.10.025

    ZHAO X F. Impact of fragment mass on the penetration capacity of tungsten alloy fragment [J]. Science Technology and Engineering, 2020, 20(10): 3967–3971. doi: 10.3969/j.issn.1671-1815.2020.10.025
    [10] JOHNSON G R. Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations [J]. Nuclear Engineering and Design, 1994, 150(2/3): 265–274. doi: 10.1016/0029-5493(94)90143-0
    [11] JOHNSON G R, BEISSEL S R, GERLACH C A. Another approach to a hybrid particle-finite element algorithm for high-velocity impact [J]. International Journal of Impact Engineering, 2011, 38(5): 397–405. doi: 10.1016/j.ijimpeng.2011.01.002
    [12] JOHNSON G R, BEISSEL S R, GERLACH C A. A combined particle-element method for high-velocity impact computations [J]. Procedia Engineering, 2013, 58: 269–278. doi: 10.1016/j.proeng.2013.05.031
    [13] RNÁNDEZ-MÉNDEZ S, BONET J, HUERTA A. Continuous blending of SPH with finite elements [J]. Computers and Structures, 2005, 83(17/18): 1448–1458. doi: 10.1016/j.compstruc.2004.10.019
    [14] DE VUYST T, VIGNJEVIC R, CAMPBELL J C. Coupling between meshless and finite element methods [J]. International Journal of Impact Engineering, 2005, 31(8): 1054–1064. doi: 10.1016/j.ijimpeng.2004.04.017
    [15] SAUER M. Simulation of high velocity impact in fluid-filled containers using finite elements with adaptive coupling to smoothed particle hydrodynamics [J]. International Journal of Impact Engineering, 2011, 38(6): 511–520. doi: 10.1016/j.ijimpeng.2010.10.023
    [16] 王吉, 王肖钧, 卞梁. 光滑粒子法与有限元的耦合算法及其在冲击动力学中的应用 [J]. 爆炸与冲击, 2007, 27(6): 522–528. doi: 10.11883/1001-1455(2007)06-0522-07

    WANG J, WANG X J, BIAN L. Linking of smoothed particle hydrodynamics method to standard finite element method and its application in impact dynamics [J]. Explosion and Shock Waves, 2007, 27(6): 522–528. doi: 10.11883/1001-1455(2007)06-0522-07
    [17] 胡德安, 韩旭, 肖毅华, 等. 光滑粒子法及其与有限元耦合算法的研究进展 [J]. 力学学报, 2013, 45(5): 639–652. doi: 10.6052/0459-1879-13-092

    HU D A, HAN X, XIAO Y H, et al. Research developments of smoothed particle hydrodynamics method and its coupling with finite element method [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 639–652. doi: 10.6052/0459-1879-13-092
    [18] 胡德安, 孙占华, 朱婷. 三维自适应FE-SPH耦合算法在多层间隔金属靶侵彻问题中的应用 [J]. 爆炸与冲击, 2015, 35(3): 416–422. doi: 10.11883/1001-1455-(2015)03-0416-07

    HU D A, SUN Z H, ZHU T. Application of 3D FE-SPH adaptive coupling algorithm to penetration analysis of spaced multi-layered metallic targets [J]. Explosion and Shock Waves, 2015, 35(3): 416–422. doi: 10.11883/1001-1455-(2015)03-0416-07
    [19] HE Q G, CHEN X W, CHEN J F. Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud [J]. Acta Astronautica, 2020, 175: 99–117. doi: 10.1016/j.actaastro.2020.05.056
    [20] ROHR I, NAHME H, THOMA K, et al. Material characterisation and constitutive modelling of a tungsten-sintered alloy for a wide range of strain rates [J]. International Journal of Impact Engineering, 2008, 35(8): 811–819. doi: 10.1016/j.ijimpeng.2007.12.006
    [21] 张伟, 庞宝君, 贾斌, 等. 弹丸超高速撞击防护屏碎片云数值模拟 [J]. 高压物理学报, 2004, 18(1): 47–52. doi: 10.11858/gywlxb.2004.01.009

    ZHANG W, PANG B J, JIA B, et al. Numerical simulation of debris cloud produced by hypervelocity impact of projectile on bumper [J]. Chinese Journal of High Pressure Physics, 2004, 18(1): 47–52. doi: 10.11858/gywlxb.2004.01.009
    [22] 郝伟江, 龙仁荣, 张庆明, 等. 球形弹丸超高速撞击靶板时背表面材料破碎的数值模拟分析 [J]. 高压物理学报, 2019, 33(2): 024102. doi: 10.11858/gywlxb.20180651

    HAO W J, LONG R R, ZHANG Q M, et al. Numerical simulation analysis of back fragmentation of sphere by hypervelocity impact [J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024102. doi: 10.11858/gywlxb.20180651
    [23] 汪庆桃, 吴克刚, 陈志阳. 圆柱形长杆超高速正碰撞薄板结构破碎效应 [J]. 振动与冲击, 2017, 36(5): 54–60. doi: 10.13465/j.cnki.jvs.2017.05.009

    WANG Q T, WU K G, CHEN Z Y. Fragmentation effect of a long cylindrical rod with a hypervelocity normally impacting a thin plate structure [J]. Journal of Vibration and Shock, 2017, 36(5): 54–60. doi: 10.13465/j.cnki.jvs.2017.05.009
    [24] SIBEAUD J M, HÉREIL P L, ALBOUYS V. Hypervelocity impact on spaced target structures: experimental and Ouranos simulation achievements [J]. International Journal of Impact Engineering, 2003, 29(1): 647−658.
    [25] 王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005.

    WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: National Defense Industry Press, 2005.
    [26] 谈庆明. 量纲分析 [M]. 合肥: 中国科学技术大学出版社, 2005.

    TAN Q M. Dimensional analysis [M]. Hefei: University of Science and Technology of China Press, 2005.
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  44
  • PDF下载量:  25
出版历程
  • 收稿日期:  2022-03-15
  • 修回日期:  2022-04-13
  • 网络出版日期:  2022-07-27
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回