hcp金属的高压拉曼散射光谱研究

刘静仪 陶雨 范春梅 吴彬彬 雷力

刘静仪, 陶雨, 范春梅, 吴彬彬, 雷力. hcp金属的高压拉曼散射光谱研究[J]. 高压物理学报, 2022, 36(5): 051102. doi: 10.11858/gywlxb.20220522
引用本文: 刘静仪, 陶雨, 范春梅, 吴彬彬, 雷力. hcp金属的高压拉曼散射光谱研究[J]. 高压物理学报, 2022, 36(5): 051102. doi: 10.11858/gywlxb.20220522
LIU Jingyi, TAO Yu, FAN Chunmei, WU Binbin, LEI Li. High-Pressure Raman Spectroscopy of hcp Metals[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 051102. doi: 10.11858/gywlxb.20220522
Citation: LIU Jingyi, TAO Yu, FAN Chunmei, WU Binbin, LEI Li. High-Pressure Raman Spectroscopy of hcp Metals[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 051102. doi: 10.11858/gywlxb.20220522

hcp金属的高压拉曼散射光谱研究

doi: 10.11858/gywlxb.20220522
基金项目: 国家自然科学基金(11774247,U2030107);四川大学理科创新研究项目(2020SCUNL107)
详细信息
    作者简介:

    刘静仪(1997-),女,硕士研究生,主要从事凝聚态物质在高压下的行为研究.E-mail:liujingyi201903@ 163.com

    通讯作者:

    雷 力(1980-),男,博士,研究员,主要从事极端条件光谱学与高压物理研究.E-mail:lei@scu.edu.cn

  • 中图分类号: O521.3; O521.2

High-Pressure Raman Spectroscopy of hcp Metals

  • 摘要: 通过高压拉曼光谱可以从微观角度研究高压下材料的晶格动力学行为。然而,受金刚石荧光与金属样品强反射的影响,高压下金属样品的拉曼光谱信号较难获得。为此,发展了一种简易的金刚石对顶砧倾角散射高压拉曼光谱技术,可实现六角密排结构(hcp)金属样品的高压拉曼光谱信号测量。以hcp金属Be为例,通过测量最高压力达73 GPa时的剪切拉曼模E2g,获得了其弹性常数C44随压力的变化关系。所提出的金刚石对顶砧倾角散射高压拉曼光谱技术为研究金属材料的成键状态、电子结构、声子-电子耦合效应提供一种新手段。

     

  • 图  高压下hcp金属单质的拉曼谱学信息

    Figure  1.  Raman spectrum information of the hcp metals under high pressure

    图  hcp金属的E2g拉曼模的原子振动示意图

    Figure  2.  Schematic diagram of the atomic vibration of the E2g Raman mode of the hcp metals

    图  四川大学ESL实验室的高压金属拉曼实验光路

    Figure  3.  Optical system layout used for the study of metals under pressure designed by ESL Lab of Sichuan University

    图  金属样品拉曼信号的不同测量方法:(a) 背散射,(b) 侧向激发散射,(c) DAC倾角散射

    Figure  4.  Different measuring methods for Raman signal of metal samples: (a) backscattering, (b) sidescattering, (c) DAC inclination scattering

    图  DAC倾角散射原理 (a) 和实验布置 (b)

    Figure  5.  (a) Schematic diagram and (b) experimental set-up image of DAC inclination scattering

    图  采用背散射法测量得到的 (a) Re在195 GPa下、(b) Os在73 GPa下、(c) Be在48 GPa下的拉曼光谱,以及采用DAC倾角散射法测量得到的 (d) Re在195 GPa下、(e) Os在73 GPa下、(f) Be在48 GPa下的拉曼光谱

    Figure  6.  Backscattering method obtained Raman scattering spectra of (a) Re at 195 GPa, (b) Os at 73 GPa and (c) Be at 48 GPa; DAC inclination scattering method obtained Raman scattering spectra of (d) Re at 195 GPa, (e) Os at 73 GPa and (f) Be at 48 GPa

    图  (a) 金属Be在不同压力下的拉曼散射光谱(曲线采用Lorentz拟合),(b) 金属Be的拉曼频移随压力的变化关系

    Figure  7.  (a) Raman scattering spectra of Be at different pressures (curves fitted by Lorentz method); (b) Raman shift of Be versus pressure

    图  金属Be的弹性剪切参数C44随压力的变化关系

    Figure  8.  Elastic shear parameter C44 of Be versus pressure

    表  1  不同的hcp金属零压下的拉曼声子频率ω0及压力系数αβ

    Table  1.   Zero-pressure Raman phonon frequency ω0 and pressure coefficients α and β for different hcp metals

    SamplePressure range/GPaω0/cm−1αp=0βp=0Ref.
    Be0−73463.42.622−6.6×10−3This work
    0−774592.806−1.1×10−2Evans, et al.[41]
    0−23455.83.559−3.51×10−2Olijnyk, et al.[24]
    0463Frass, et al.[42]
    0455Feldman, et al.[39]
    Os0−211164.20.591−1.05×10−3Liu, et al.[34]
    0−13164.80.739−7.82×10−3Ponosov, et al.[43]
    Re0−205121.30.438−4.94×10−4Liu, et al.[34]
    0−201200.56−7.8×10−4Qi, et al.[44]
    0−63121.30.573−1.54×10−3Olijnyk, et al.[25]
    0−431190.694−4.25×10−3Goncharov, et al.[45] (under hydrostatic)
    0−138119.90.468−9.04×10−4Goncharov, et al.[45] (under nonhydrostatic)
    下载: 导出CSV

    A1  不同压力下Be的拉曼峰频率

    A1.   Raman shifts of Be under different pressures

    Exp. No. p/GPa ω/cm−1 Exp. No. p/GPa ω/cm−1 Exp. No. p/GPa ω/cm−1
    10456.0 1 16.8502.2 225.8529.3
    0.1456.917.3503.827.0528.0
    1.6460.817.4505.529.1534.4
    2.8473.518.6507.731.8540.0
    4.2469.720.0509.434.0542.3
    5.9473.521.0512.734.6548.7
    6.4478.821.6511.236.3550.0
    10.3489.322.0513.239.3557.2
    10.7493.322.8516.044.8566.6
    13.3493.023.4515.648.6573.3
    13.4494.823.6516.050.0577.9
    14.1497.026.4515.653.5581.2
    14.3497.428.8523.055.0590.2
    14.5499.530.0534.958.0592.9
    15.1496.4 10463.660.0597.8
    15.2496.313.1497.162.0603.3
    15.9499.416.6505.068.0614.4
    16.4503.821.0514.069.0610.5
    16.5501.623.9521.673.0617.1
    下载: 导出CSV

    A2  Be在不同压力下的弹性剪切参数及其误差

    A2.   Elastic shear parameter and their errors at different pressures of Be

    p/GPaω/cm−1aδacδcC44/GPa$\delta{_{C_{44}} }$/GPaError/%
    0463.62.258±0.0043.519±0.011113.7±0.070.06
    13.1497.12.210±0.0063.453±0.015133.9±0.110.09
    16.6505.02.198±0.0063.436±0.016139.1±0.130.09
    21.0514.02.182±0.0073.415±0.017145.2±0.150.10
    23.9521.62.173±0.0073.402±0.018150.3±0.160.11
    25.8529.32.166±0.0073.393±0.019155.3±0.170.11
    27.0528.02.162±0.0073.388±0.019154.8±0.180.11
    29.1534.42.155±0.0083.378±0.020159.2±0.190.12
    31.8540.02.147±0.0083.366±0.021163.2±0.200.12
    34.0542.32.140±0.0083.357±0.022165.2±0.210.13
    34.6548.72.138±0.0083.354±0.022169.3±0.220.13
    36.3550.02.132±0.0093.347±0.022170.6±0.230.14
    39.3557.22.123±0.0093.334±0.024176.0±0.250.14
    44.8566.62.107±0.0103.311±0.026183.6±0.290.16
    48.6573.32.095±0.0103.296±0.027189.1±0.320.17
    50.0577.92.091±0.0113.291±0.028192.6±0.330.17
    53.5581.22.081±0.0113.277±0.029195.8±0.350.18
    55.0590.22.077±0.0113.271±0.030202.4±0.380.19
    58.0592.92.069±0.0123.260±0.031205.2±0.400.19
    60.0597.82.064±0.0123.253±0.032209.2±0.420.20
    62.0603.32.058±0.0123.246±0.032213.7±0.440.21
    68.0614.42.043±0.0133.224±0.035223.6±0.500.23
    69.0610.52.040±0.0143.221±0.035221.1±0.510.23
    73.0617.12.030±0.0143.207±0.037227.2±0.550.24
    下载: 导出CSV
  • [1] LAZICKI A, DEWAELE A, LOUBEYRE P, et al. High-pressure-temperature phase diagram and the equation of state of beryllium [J]. Physical Review B, 2012, 86(17): 174118. doi: 10.1103/PhysRevB.86.174118
    [2] VERMA A K, RAVINDRAN P, RAO R S, et al. On the stability of rhenium up to 1 TPa pressure against transition to the bcc structure [J]. Bulletin of Materials Science, 2003, 26(1): 183–187. doi: 10.1007/BF02712810
    [3] DUBROVINSKY L, DUBROVINSKAIA N, PRAKAPENKA V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar [J]. Nature Communications, 2012, 3: 1163. doi: 10.1038/ncomms2160
    [4] DUBROVINSKY L, DUBROVINSKAIA N, BYKOVA E, et al. The most incompressible metal osmium at static pressures above 750 gigapascals [J]. Nature, 2015, 525(7568): 226–229. doi: 10.1038/nature14681
    [5] MERKEL S, GONCHAROV A F, MAO H K, et al. Raman spectroscopy of iron to 152 gigapascals: implications for earth’s inner core [J]. Science, 2000, 288(5471): 1626–1629. doi: 10.1126/science.288.5471.1626
    [6] GONCHAROV A F, STRUZHKIN V V. Raman spectroscopy of metals, high-temperature superconductors and related materials under high pressure [J]. Journal of Raman Spectroscopy, 2003, 34(7/8): 532–548.
    [7] 雷力, 蒲梅芳, 冯雷豪, 等. 立方聚合氮(cg-N)的高温高压合成 [J]. 高压物理学报, 2018, 32(2): 020102. doi: 10.11858/gywlxb.20170672

    LEI L, PU M F, FENG L H, et al. Synthesis of cubic gauche nitrogen (cg-N) under high pressure and high temperature [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 020102. doi: 10.11858/gywlxb.20170672
    [8] 高上攀, 姜小东, 胡启威, 等. Re3N的变温拉曼散射与高压同步辐射研究 [J]. 光散射学报, 2017, 29(1): 33–38.

    GAO S P, JIANG X D, HU Q W, et al. Temperature dependence on Raman spectra and high-pressure synchrotron radiation study of Re3N [J]. The Journal of Light Scattering, 2017, 29(1): 33–38.
    [9] 范春梅, 刘静仪, 刘珊, 等. 氮化镓低温高压光谱研究 [J]. 光散射学报, 2020, 32(3): 259–265. doi: 10.13883/j.issn1004-5929.202003010

    FAN C M, LIU J Y, LIU S, et al. Low-temperature and high-pressure spectroscopy study of gallium nitride [J]. The Journal of Light Scattering, 2020, 32(3): 259–265. doi: 10.13883/j.issn1004-5929.202003010
    [10] 张峰, 陶雨, 唐琦琪, 等. 三氧化二镓的高压拉曼光谱研究 [J]. 光散射学报, 2021, 33(1): 40–44. doi: 10.13883/j.issn1004-5929.202101005

    ZHANG F, TAO Y, TANG Q Q, et al. High-pressure Raman spectroscopy of Ga2O3 [J]. The Journal of Light Scattering, 2021, 33(1): 40–44. doi: 10.13883/j.issn1004-5929.202101005
    [11] RECH G L, ZORZI J E, PEROTTONI C A. Equation of state of hexagonal-close-packed rhenium in the terapascal regime [J]. Physical Review B, 2019, 100(17): 174107. doi: 10.1103/PhysRevB.100.174107
    [12] OCCELLI F, FARBER D L, BADRO J, et al. Experimental evidence for a high-pressure isostructural phase transition in osmium [J]. Physical Review Letters, 2004, 93(9): 095502. doi: 10.1103/PhysRevLett.93.095502
    [13] MA Y M, CUI T, ZHANG L J, et al. Electronic and crystal structures of osmium under high pressure [J]. Physical Review B, 2005, 72(17): 174103. doi: 10.1103/PhysRevB.72.174103
    [14] PERREAULT C S, VELISAVLJEVIC N, VOHRA Y K. High-pressure structural parameters and equation of state of osmium to 207 GPa [J]. Cogent Physics, 2017, 4(1): 1376899. doi: 10.1080/23311940.2017.1376899
    [15] KOUDELA D, RICHTER M, MÖBIUS A, et al. Lifshitz transitions and elastic properties of osmium under pressure [J]. Physical Review B, 2006, 74(21): 214103. doi: 10.1103/PhysRevB.74.214103
    [16] GLAZYRIN K, POUROVSKII L V, DUBROVINSKY L, et al. Importance of correlation effects in hcp iron revealed by a pressure-induced electronic topological transition [J]. Physical Review Letters, 2013, 110(11): 117206. doi: 10.1103/PhysRevLett.110.117206
    [17] STEINLE-NEUMANN G, STIXRUDE L, COHEN R E. Absence of lattice strain anomalies at the electronic topological transition in zinc at high pressure [J]. Physical Review B, 2001, 63(5): 054103.
    [18] GILLET P, HEMLEY R J, MCMILLAN P F. Vibrational properties at high pressures and temperatures [J]. Reviews in Mineralogy and Geochemistry, 1998, 37(1): 525–590.
    [19] OLIJNYK H. Raman scattering in metallic Si and Ge up to 50 GPa [J]. Physical Review Letters, 1992, 68(14): 2232–2234. doi: 10.1103/PhysRevLett.68.2232
    [20] OLIJNYK H. High pressure Raman spectra of Gd, Lu and Y [J]. High Pressure Research, 1994, 13(1): 99–102.
    [21] OLIJNYK H, JEPHCOAT A P. Effect of pressure on Raman phonons in zirconium metal [J]. Physical Review B, 1997, 56(17): 10751–10753. doi: 10.1103/PhysRevB.56.10751
    [22] OLIJNYK H. Unusual broadening and splitting of the K≈0 transverse-optical phonon in hcp Mg at high pressure [J]. Journal of Physics: Condensed Matter, 1999, 11(34): 6589–6594. doi: 10.1088/0953-8984/11/34/311
    [23] OLIJNYK H, JEPHCOAT A P, NOVIKOV D L, et al. Pressure shift of the zone-center TO mode of Zn [J]. Physical Review B, 2000, 62(9): 5508–5512. doi: 10.1103/PhysRevB.62.5508
    [24] OLIJNYK H, JEPHCOAT A P. Raman spectra of beryllium to 23 GPa [J]. Journal of Physics: Condensed Matter, 2000, 12(41): 8913–8918. doi: 10.1088/0953-8984/12/41/317
    [25] OLIJNYK H, JEPHCOAT A P, REFSON K. On optical phonons and elasticity in the hcp transition metals Fe, Ru and Re at high pressure [J]. Europhysics Letters, 2001, 53(4): 504–510. doi: 10.1209/epl/i2001-00181-4
    [26] OLIJNYK H, GROSSHANS W A, JEPHCOAT A P. Lattice vibrations and electronic transitions in the rare-earth metals: praseodymium under pressure [J]. Physical Review Letters, 2004, 93(25): 255505. doi: 10.1103/PhysRevLett.93.255505
    [27] OLIJNYK H, NAKANO S, JEPHCOAT A P, et al. Lattice-dynamical studies of Ti in the hcp- and ω-phase by Raman scattering at high-pressure [J]. Physical Review B, 2006, 74(10): 104302. doi: 10.1103/PhysRevB.74.104302
    [28] OLIJNYK H, NAKANO S, JEPHCOAT A P, et al. Unusual pressure response of the E2g mode and elastic shear modulus C44 in hcp scandium [J]. Journal of Physics: Condensed Matter, 2006, 18(48): 10971–10976. doi: 10.1088/0953-8984/18/48/024
    [29] OLIJNYK H, NAKANO S, TAKEMURA K. Vibrational and elastic properties of hcp barium under pressure and their relation to its electronic structure [J]. Solid State Communications, 2007, 142(1/2): 41–44.
    [30] GONCHAROV A F, CROWHURST J, ZAUG J M. Elastic and vibrational properties of cobalt to 120 GPa [J]. Physical Review Letters, 2004, 92(11): 115502. doi: 10.1103/PhysRevLett.92.115502
    [31] GONCHAROV A F, STRUZHKIN V V, MAO H K, et al. Spectroscopic evidence for broken-symmetry transitions in dense lithium up to megabar pressures [J]. Physical Review B, 2005, 71(18): 184114. doi: 10.1103/PhysRevB.71.184114
    [32] MA Y M, EREMETS M, OGANOV A R, et al. Transparent dense sodium [J]. Nature, 2009, 458(7235): 182–185. doi: 10.1038/nature07786
    [33] NOVOSELOV D, ANISIMOV V I, PONOSOV Y S. Phonon mode softening and elastic properties of hafnium under pressure [J]. Physical Review B, 2018, 97(18): 184108. doi: 10.1103/PhysRevB.97.184108
    [34] LIU J Y, TAO Y, FAN C M, et al. High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44 [J]. Chinese Physics B, 2022, 31(3): 037801. doi: 10.1088/1674-1056/ac1eff
    [35] MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research Solid Earth, 1986, 91(B5): 4673–4676. doi: 10.1029/JB091iB05p04673
    [36] AKAHAMA Y, KAWAMURA H. High-pressure Raman spectroscopy of diamond anvils to 250 GPa: method for pressure determination in the multimegabar pressure range [J]. Journal of Applied Physics, 2004, 96(7): 3748–3751. doi: 10.1063/1.1778482
    [37] LIU S, TANG Q Q, WU B B, et al. Raman scattering from highly-stressed anvil diamond [J]. Chinese Physics B, 2021, 30(1): 016301. doi: 10.1088/1674-1056/abc7a7
    [38] PU M F, ZHANG F, LIU S, et al. Tensile-strain induced phonon splitting in diamond [J]. Chinese Physics B, 2019, 28(5): 053102. doi: 10.1088/1674-1056/28/5/053102
    [39] FELDMAN D W, PARKER J H JR, ASHKIN M. Raman scattering by optical modes of metals [J]. Physical Review Letters, 1968, 21(9): 607–608. doi: 10.1103/PhysRevLett.21.607
    [40] VELISAVLJEVIC N, CHESNUT G N, VOHRA Y K, et al. Structural and electrical properties of beryllium metal to 66 GPa studied using designer diamond anvils [J]. Physical Review B, 2002, 65(17): 172107. doi: 10.1103/PhysRevB.65.172107
    [41] EVANS W J, LIPP M J, CYNN H, et al. X-ray diffraction and Raman studies of beryllium: static and elastic properties at high pressures [J]. Physical Review B, 2005, 72(9): 094113. doi: 10.1103/PhysRevB.72.094113
    [42] FRAAS L M, PORTO S P S, LOH E. Symmetry in Raman scattering from the optical phonon in single crystal beryllium [J]. Solid State Communications, 1970, 8(10): 803–805. doi: 10.1016/0038-1098(70)90436-9
    [43] PONOSOV Y S, STRUZHKIN V V, GONCHAROV A F, et al. Q-dependent electronic excitations in osmium: pressure- and temperature-induced effects [J]. Physical Review B, 2008, 78(24): 245106. doi: 10.1103/PhysRevB.78.245106
    [44] 戚磊, 雷力, 冯雷豪, 等. 铼的弹性剪切参数C44对温度与压力响应的原位拉曼光谱研究 [J]. 光谱学与光谱分析, 2018, 38(12): 3764–3768.

    QI L, LEI L, FENG L H, et al. Response of elastic shear parameter C44 of rhenium to temperature and pressure: a Raman spectroscopy study [J]. Spectroscopy and Spectral Analysis, 2018, 38(12): 3764–3768.
    [45] GONCHAROV A F, GREGORYANZ E, STRUZHKIN V V, et al. Raman scattering of metals to very high pressures [EB/OL]. (2001−12−20). https://arxiv.org/abs/cond-mat/0112404.
    [46] UPADHYAYA J C, SHARMA D K, PRAKASH D, et al. Three-particle forces in the lattice dynamics of some hexagonal close-packed metals [J]. Canadian Journal of Physics, 1994, 72(1/2): 61–72.
    [47] OLIJNYK H, JEPHCOAT A P. The E2g phonon and the elastic constant C44 in hexagonal van der Waals bonded solids [J]. Journal of Physics: Condensed Matter, 2000, 12(50): 10423–10428. doi: 10.1088/0953-8984/12/50/305
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  135
  • PDF下载量:  64
出版历程
  • 收稿日期:  2022-02-26
  • 修回日期:  2022-03-18
  • 录用日期:  2022-03-18
  • 网络出版日期:  2022-09-16
  • 刊出日期:  2022-10-11

目录

    /

    返回文章
    返回