高压下G2ZT晶体结构、电子结构和光学性质的第一性原理研究

李佐 刘云 廖大麟 成丽红

李佐, 刘云, 廖大麟, 成丽红. 高压下G2ZT晶体结构、电子结构和光学性质的第一性原理研究[J]. 高压物理学报, 2022, 36(4): 042202. doi: 10.11858/gywlxb.20220514
引用本文: 李佐, 刘云, 廖大麟, 成丽红. 高压下G2ZT晶体结构、电子结构和光学性质的第一性原理研究[J]. 高压物理学报, 2022, 36(4): 042202. doi: 10.11858/gywlxb.20220514
LI Zuo, LIU Yun, LIAO Dalin, CHENG Lihong. First-Principles Study on Structural, Electronic and Optical Properties of G2ZT Crystal under High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 042202. doi: 10.11858/gywlxb.20220514
Citation: LI Zuo, LIU Yun, LIAO Dalin, CHENG Lihong. First-Principles Study on Structural, Electronic and Optical Properties of G2ZT Crystal under High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 042202. doi: 10.11858/gywlxb.20220514

高压下G2ZT晶体结构、电子结构和光学性质的第一性原理研究

doi: 10.11858/gywlxb.20220514
基金项目: 贵州省科技计划项目([2020]1Y023);贵州省教育厅青年科技人才成长项目(KY[2018]398)
详细信息
    作者简介:

    李 佐(1983-),男,硕士,讲师,主要从事高压下含能材料物性研究. E-mail:lizuo212@163.com

  • 中图分类号: O521.2

First-Principles Study on Structural, Electronic and Optical Properties of G2ZT Crystal under High Pressure

  • 摘要: 基于密度泛函理论的第一性原理研究了高压下富氮含能材料(双3, 4, 5-三氨基-1, 2, 4-三唑)-5, 5′-偶氮四唑(G2ZT)的几何结构、电子结构和光学性质。结果表明,在考虑范德瓦尔斯色散修正和密度泛函色散修正的情况下, 分子晶体结构数据与实验结果的相对误差均在3%以内。Hirshfeld表面分析结果表明,随着压强增大,分子间氢键的相互作用减弱。G2ZT晶体在零压下的能带带隙为2.03 eV,是一种p型半导体。随着压强增大,带隙变窄,吸收系数可达到3.0×106 cm−1。研究结果为进一步分析高压下G2ZT晶体的特征提供了理论参考。

     

  • 图  G2ZT晶体的晶胞结构和分子模型

    Figure  1.  Cell structure and molecular model of G2ZT crystal

    图  G2ZT晶体的晶格参数和体积比随压强的变化

    Figure  2.  Lattice parameters and V/V0 of G2ZT crystal versus pressure

    图  C2N10分子在0 GPa下的Hirshfeld面和二维指纹图

    Figure  3.  Hirshfeld surface and two-dimensional finger patterns of C2N10 molecule at 0 GPa

    图  C2N10分子在40 GPa下的Hirshfeld面和二维指纹图

    Figure  4.  Hirshfeld surface and two-dimensional finger patterns of C2N10 molecule at 40 GPa

    图  G2ZT晶体在不同压强下的能带色散关系

    Figure  5.  Energy band dispersion of G2ZT crystal at different pressures

    图  不同压强下G2ZT晶体的态密度分布

    Figure  6.  Distributions of DOS of G2ZT crystal at different pressures

    图  不同压强下G2ZT晶体的介电函数随入射能量的变化

    Figure  7.  Dielectric functions of G2ZT crystal versus incident energy at different pressures

    图  G2ZT晶体在0和40 GPa压强下的反射率随入射能量的变化

    Figure  8.  Reflection index of G2ZT crystal versus incident energy at 0 and 40 GPa

    图  G2ZT晶体在0和40 GPa压强下的折射率随入射能量的变化

    Figure  9.  Refraction index of G2ZT crystal versus incident energy at 0 and 40 GPa

    图  10  G2ZT晶体在0和40 GPa压强下的吸收系数随入射能量的变化

    Figure  10.  Absorption coefficient of G2ZT crystal versus incident energy at 0 and 40 GPa

    表  1  G2ZT晶格参数的计算结果和实验结果比较[2]

    Table  1.   Calculated crystal lattice parameters of G2ZT compared with experimental data[2]

    Methodabc$\alpha $/(°)$\,\beta $/(°)$\gamma $/(°)V3
    vdW-DF25.37336.604411.9931102.3691.14109.42390.1694
    PBE-D25.35406.792011.7190100.2391.80110.55390.6893
    Expt.[2]5.26196.698011.8840102.0590.80109.96383.3499
    $\delta $vdW-DF2/%2.10−1.40 0.92 0.300.37−0.491.80
    $\delta $PBE-D2/%1.70 1.40−1.40−1.801.10 0.531.90
    下载: 导出CSV

    表  2  三阶BM和Vinet物态方程拟合得到的G2ZT晶体的体弹模量及其一阶导数

    Table  2.   Bulk moduli and their pressure-derivatives of G2ZT crystal determined by third-order BM and Vinet equations of state

    MethodThird-order BM Vinet
    B0/GPa$B_0' $ B0/GPa$B_0' $
    PBE-D219.69±0.805.50±0.22 18.84±0.636.06±0.16
    vdW-DF227.58±0.764.85±0.14 26.48±0.665.39±0.13
    下载: 导出CSV

    表  3  不同压强下第一布里渊区高对称$k$点在价带顶$E_{\rm{v}}$和导带底$E_{\rm{c}} $的特征能量

    Table  3.   Characteristic energy values for top of valence band $E_{\rm{v}} $ and bottom of conduction band $E_{\rm{c}} $ in highly symmetric $k$ points of the first Brillouin region at different pressures

    Pressure/GPaEc/eV Ev/eV
    RΓXM RΓXM
    02.032.252.032.03 0.00−0.050.000.00
    31.732.011.731.730.00−0.040.000.00
    101.331.661.311.330.00−0.09−0.03 0.00
    400.931.460.810.91−0.04 −0.25−0.18 0.00
    下载: 导出CSV
  • [1] KLAPÖTKE T M, SABATÉ C M. Bistetrazoles: nitrogen-rich, high-performing, insensitive energetic compounds [J]. Chemistry of Materials, 2008, 20(11): 3629–3637. doi: 10.1021/cm703657k
    [2] KLAPÖTKE T M, SABATÉ C M. 5, 5′-Hydrazinebistetrazole: an oxidation-stable nitrogen-rich compound and starting material for the synthesis of 5, 5′-Azobistetrazolates [J]. Zeitschrift für Anorganische und Allgemeine Chemie, 2007, 633(15): 2671–2677.
    [3] KARAGHIOSOFF K, KLAPÖTKE T M, SABATÉ C M. Nitrogen-rich compounds in pyrotechnics: alkaline earth metal salts of 5, 5′-hydrazine-1, 2-diylbis (1H-tetrazole) [J]. European Journal of Inorganic Chemistry, 2009(2): 238–250. doi: 10.1002/ejic.200800939
    [4] EBESPÄCHER M, KLAPÖTKE T M, SABATÉ C M. Nitrogen-rich alkali metal 5, 5′-hydrazinebistetrazolate salts: environmentally friendly compounds in pyrotechnic mixtures [J]. New Journal of Chemistry, 2009, 33(3): 517–527. doi: 10.1039/B818927G
    [5] DE LUCIA F C JR, GOTTFRIED J L. Characterization of a series of nitrogen-rich molecules using laser induced breakdown spectroscopy [J]. Propellants, Explosives, Pyrotechnics, 2010, 35(3): 268–277. doi: 10.1002/prep.201000009
    [6] DREGER Z A, STASH A I, YU Z G, et al. High-pressure structural response of an insensitive energetic crystal: dihydroxylammonium 5, 5′-bistetrazole-1, 1′-diolate (TKX-50) [J]. The Journal of Physical Chemistry C, 2017, 121(10): 5761–5767. doi: 10.1021/acs.jpcc.7b00867
    [7] FANG X, STONE M, STENNETT C. Pulsed laser irradiation of a nanoparticles sensitized RDX crystal [J]. Combustion and Flame, 2020, 214: 387–393. doi: 10.1016/j.combustflame.2020.01.009
    [8] ISBELL R A, BREWSTER M Q. Optical properties of energetic materials: RDX, HMX, AP, NC/NG, and HTPB [J]. Propellants, Explosives, Pyrotechnics, 1998, 23(4): 218–224. doi: 10.1002/(SICI)1521-4087(199808)23:4<218::AID-PREP218>3.0.CO;2-A
    [9] ORDEJÓN P, ARTACHO E, SOLER J M. Self-consistent order-N density-functional calculations for very large systems [J]. Physical Review B, 1996, 53(16): R10441–R10444. doi: 10.1103/PhysRevB.53.R10441
    [10] SÁNCHEZ-PORTAL D, ORDEJÓN P, ARTACHO E, et al. Density-functional method for very large systems with LCAO basis sets [J]. International Journal of Quantum Chemistry, 1997, 65(5): 453–461. doi: 10.1002/(SICI)1097-461X(1997)65:5<453::AID-QUA9>3.0.CO;2-V
    [11] SOLER J M, ARTACHO E, GALE J D, et al. The SIESTA method for ab initio order-N materials simulation [J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2745–2779. doi: 10.1088/0953-8984/14/11/302
    [12] DION M, RYDBERG H, SCHRÖDER E, et al. Van der Waals density functional for general geometries [J]. Physical Review Letters, 2004, 92(24): 246401. doi: 10.1103/PhysRevLett.92.246401
    [13] HAMADA I. Van der Waals density functional made accurate [J]. Physical Review B, 2014, 89(12): 121103. doi: 10.1103/PhysRevB.89.121103
    [14] GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J]. Journal of Computational Chemistry, 2006, 27(15): 1787–1799. doi: 10.1002/jcc.20495
    [15] GRIMME S, EHRLICH S, GOERIGK L. Effect of the damping function in dispersion corrected density functional theory [J]. Journal of Computational Chemistry, 2011, 32(7): 1456–1465. doi: 10.1002/jcc.21759
    [16] TROULLIER N, MARTINS J L. Efficient pseudopotentials for plane-wave calculations [J]. Physical Review B, 1991, 43(3): 1993–2006. doi: 10.1103/PhysRevB.43.1993
    [17] SANKEY O F, NIKLEWSKI D J. Ab initio multicenter tight-binding model for molecular dynamics simulations and other applications in covalent systems [J]. Physical Review B, 1989, 40(6): 3979–3995. doi: 10.1103/PhysRevB.40.3979
    [18] JUNQUERA J, PAZ Ó, SÁNCHEZ-PORTAL D, et al. Numerical atomic orbitals for linear-scaling calculations [J]. Physical Review B, 2001, 64(23): 235111. doi: 10.1103/PhysRevB.64.235111
    [19] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188–5192. doi: 10.1103/PhysRevB.13.5188
    [20] TRAN F, BLAHA P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential [J]. Physical Review Letters, 2009, 102(22): 226401. doi: 10.1103/PhysRevLett.102.226401
    [21] AMBROSCH-DRAXL C, SOFO J O. Linear optical properties of solids within the full-potential linearized augmented planewave method [J]. Computer Physics Communications, 2006, 175(1): 1–14. doi: 10.1016/j.cpc.2006.03.005
    [22] TOLL J S. Causality and the dispersion relation: logical foundations [J]. Physical Review, 1956, 104(6): 1760–1770. doi: 10.1103/PhysRev.104.1760
    [23] RIVAS-SILVA J F, BLAS M A, HOAT D M. Theoretical study of electronic and optical properties of antiferromagnetic β-MnS using the modified becke johnson (mBJ) potential [J]. Journal of Physics and Chemistry of Solids, 2017, 128: 310–315.
    [24] BIRCH F. Finite elastic strain of cubic crystals [J]. Physical Review, 1947, 71(11): 809–824. doi: 10.1103/PhysRev.71.809
    [25] VINET P, FERRANTE J, SMITH J R, et al. A universal equation of state for solids [J]. Journal of Physics C: Solid State Physics, 1986, 19(20): L467–L473. doi: 10.1088/0022-3719/19/20/001
    [26] MCKINNON J J, JAYATILAKA D, SPACKMAN M A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces [J]. Chemistry Communications, 2007(37): 3814–3816. doi: 10.1039/b704980c
    [27] SPACKMAN M A, JAYATILAKA D. Hirshfeld surface analysis [J]. CrystEngComm, 2009, 11(1): 19–32. doi: 10.1039/B818330A
    [28] SPACKMAN P R, TURNER M J, MCKINNON J J, et al. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals [J]. Journal of Applied Crystallography, 2021, 54(3): 1006–1011. doi: 10.1107/S1600576721002910
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  84
  • PDF下载量:  30
出版历程
  • 收稿日期:  2022-02-17
  • 修回日期:  2022-03-06
  • 录用日期:  2022-03-06
  • 网络出版日期:  2022-06-22
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回