抗侵彻孔结构装甲的可靠性优化设计

姚晨辉 杨刚 张哲 李安祺

姚晨辉, 杨刚, 张哲, 李安祺. 抗侵彻孔结构装甲的可靠性优化设计[J]. 高压物理学报, 2022, 36(4): 045102. doi: 10.11858/gywlxb.20220507
引用本文: 姚晨辉, 杨刚, 张哲, 李安祺. 抗侵彻孔结构装甲的可靠性优化设计[J]. 高压物理学报, 2022, 36(4): 045102. doi: 10.11858/gywlxb.20220507
YAO Chenhui, YANG Gang, ZHANG Zhe, LI Anqi. Reliability Optimization Design of Anti-Penetration Perforated Armor[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 045102. doi: 10.11858/gywlxb.20220507
Citation: YAO Chenhui, YANG Gang, ZHANG Zhe, LI Anqi. Reliability Optimization Design of Anti-Penetration Perforated Armor[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 045102. doi: 10.11858/gywlxb.20220507

抗侵彻孔结构装甲的可靠性优化设计

doi: 10.11858/gywlxb.20220507
基金项目: 国防基础科研项目(JCKY2019110D008)
详细信息
    作者简介:

    姚晨辉(1997-),男,硕士研究生,主要从事结构可靠性优化研究.E-mail:S2002W0238@hnu.edu.cn

    通讯作者:

    杨 刚(1981-),男,博士,教授,主要从事冲击动力学与计算力学研究.E-mail:yanggang@hnu.edu.cn

  • 中图分类号: O385; TJ02

Reliability Optimization Design of Anti-Penetration Perforated Armor

  • 摘要: 孔结构装甲在满足抗侵彻性能的同时需实现减重,因而轻量化设计具有工程实际意义。以孔结构装甲的轻量化为设计目标,抗侵彻性能为约束条件,考虑不确定性因素的影响,开展孔结构装甲的可靠性优化设计。样本点采用最优拉丁超立方法设计生成,孔结构装甲抗侵彻仿真的参数化建模及响应计算通过商业软件ANSYS的二次开发实现,引入Kriging代理模型和期望改变量(expected improvement, EI)加点法构建性能函数,最后采用序列优化与可靠性评估方法(sequential optimization and reliabilityassessment, SORA)进行可靠性优化设计。结果表明,可靠性优化后,孔结构装甲在满足抗侵彻性能和相关可靠度指标的前提下,可有效地实现减重11.5%。研究结果可为其他抗侵彻防护结构的可靠性优化设计提供参考。

     

  • 图  孔结构装甲可靠性优化设计流程

    Figure  1.  Flow chart of reliability optimization designfor perforated armor

    图  子弹侵彻孔结构装甲的数值模型

    Figure  2.  Numerical model of bullet penetration into perforated armor

    图  子弹侵彻后孔结构装甲毁伤的仿真结果与实验结果[3]对比

    Figure  3.  Comparison of the simulation and the experimental[3] results of the damage in the perforated armor after the bullet penetration

    图  实心装甲损伤的数值仿真结果与实验结果[3]对比

    Figure  4.  Comparison of the numerical simulation and the experimental[3] results of the damage in the solid armor

    图  孔结构装甲抗侵彻性能函数代理模型构建流程

    Figure  5.  Flow chart of the construction process of surrogate model for anti-penetration performance function of perforated armor

    图  抗侵彻孔结构装甲的原型

    Figure  6.  Numerical model of the prototype of the anti-penetration perforated structure armor

    图  孔结构装甲抗侵彻分析的参数化流程

    Figure  7.  Flow chart of parameterized process of anti-penetration analysis of perforated armor

    图  孔结构装甲可靠性优化流程

    Figure  8.  Flow chart of reliability optimization process of perforated armor

    图  可靠性优化设计前后的孔结构装甲

    Figure  9.  Perforated armor before and after reliability optimization

    表  1  弹体与装甲材料参数[3]

    Table  1.   Material parameters of bullet and armor[3]

    Componentρ/(kg·m−3)E/GPaG/GPavA/MPa B/MPa n C $\dot{\varepsilon} $0/s−1 cp/(J·kg−1·K−1) T0/K Tm/K m
    Target material 7 850 206 80 0.30 1200 1 580 0.175 0.004 0.000 1 450 300 1 800 1.00
    Bullet core 7 850 206 80 0.30 1900 1 100 0.065 0.050 0.001 0 477 300 1 800 1.00
    Brass jacket8 960124460.34 90 292 0.310 0.025 1.000 0 386 300 1 356 1.09
    下载: 导出CSV

    表  2  孔结构装甲可靠性优化设计相关变量的约束范围

    Table  2.   Ranges of the relevant variables in reliability optimization design of perforated structure armor

    R/mmd/mmv/(m∙s−1)$ \theta $/(°)
    4.5−6.27.8−12.4834−87485−95
    下载: 导出CSV

    表  3  最优拉丁超立方法抽取的采样点和响应

    Table  3.   Sampling points and responses obtained by the optimal Latin hypercube method

    R/mmd/mmv/(m·s−1)$ \theta $/(°)v′/(m·s−1)m′/g
    6.05210.200870.52294.130811.1294.662
    5.9788.600867.04386.304808.0164.889
    5.3878.400844.43593.261760.7914.854
    4.79612.200842.69686.739675.8214.112
    4.7228.800837.47885.435603.8613.958
    4.94311.800874.00087.174710.5464.245
    5.01711.600856.60990.652667.4704.005
    5.23910.800872.26192.826780.6414.506
    5.68311.200853.13088.478754.2754.529
    5.4619.200849.65285.870747.8814.622
    4.8709.800846.17491.957691.6754.366
    5.83011.000847.91393.696762.8884.720
    5.53512.000868.78389.783761.7344.493
    4.50012.400851.39191.522568.4533.551
    6.12610.400839.21789.348782.6664.794
    5.6097.800840.95788.043788.8744.941
    5.31310.600835.73992.391719.7394.375
    5.7579.000834.00091.087759.1824.708
    6.2008.200858.34895.000814.1275.034
    4.64811.400860.08785.000701.9054.282
    5.0919.400865.30488.914725.5714.170
    5.90410.000863.56590.217800.9314.745
    5.1658.000861.82694.565767.4364.786
    4.5749.600854.87087.609648.1054.038
    下载: 导出CSV

    表  4  剩余速度响应代理模型构建的新增样本和响应

    Table  4.   Added samples and responses built by residual velocity response surrogate model

    R/mmd/mmv/(m·s−1)$ \theta $/(°)v′/(m·s−1)
    4.66812.400835.17491.508562.223
    6.20012.400837.16992.044779.260
    4.5009.031843.09586.100604.955
    4.50112.399857.09088.573529.787
    4.5039.796853.83986.088619.838
    6.20012.400837.02985.000757.080
    下载: 导出CSV

    表  5  剩余质量响应代理模型构建的新增样本和响应

    Table  5.   Added samples and responses built by residual mass response surrogate model

    R/mmd/mmv/(m·s−1)$ \theta $/(°)m′/g
    6.20012.395835.62685.0004.713
    4.5007.800873.78985.0003.846
    4.5007.800856.41188.0964.159
    4.50012.400834.18092.0233.463
    6.2007.800834.00085.0005.209
    4.50012.400834.00094.9023.448
    下载: 导出CSV

    表  6  校核样本点和结果

    Table  6.   Check samples and results

    R/mmd/mmv/(m·s−1) $ \theta $/(°)v′/(m·s−1)Residual velocity
    accuracy checking
    m′/gResidual mass
    accuracy checking
    Sur.Sim.AAE/%MAE/(m·s−1)Sur.Sim.AAE/%MAE/g
    5.86011.48087491805.051805.1500.588.3944.7004.6501.580.105
    4.50012.40085090555.406552.9603.6363.531
    6.2008.72084287820.845814.0105.1165.048
    4.8409.64086685698.654690.2604.1594.229
    5.18010.56083493697.718701.0104.2884.329
    5.5207.80085895788.991793.0704.9334.929
      Note: Sur. means surrogate model.
    下载: 导出CSV

    表  7  随机变量参数的概率分布信息

    Table  7.   Probability distribution information of random variables and parameters

    SymbolDistribution patternMeanVarianceVariable upper limitVariable lower limit
    $ R $Normal distribution${\,\mu _R}$0.02${\,\mu _R}$4.5 mm 6.2 mm
    $ d $Normal distribution${\,\mu _d}$0.02${\,\mu _d}$7.8 mm12.4 mm
    $ v $Normal distribution854 m/s17.08 m/s
    $ \theta $Normal distribution90°1.8°
    下载: 导出CSV

    表  8  孔结构装甲优化参数结果

    Table  8.   Parameter results of the optimization of perforated structure armor

    VariableR/mmd/mm n1 n2
    Initial design6.00 10.00 10 11
    Reliability optimization5.06 7.83 13 15
      Note: $ {n_1} $ is the maximum hole quantity in each row; $ {n_2} $ is the maximum hole quantity in each column.
    下载: 导出CSV

    表  9  输出响应和孔结构装甲质量属性

    Table  9.   Output responses and the quality attributes of perforated structure armor

    Responses$v'/({\text{m}\cdot\text{s}^{ {-1} } } )$$m'/{\text{g} }$ $M/{\text{g} }$ $\sigma /({\text{g}\cdot\text{cm}^{{-2} } } )$ $L_{ \rm{wd} }$/%
    Initial design794.460 4.739 331.168 3.31 0
    Reliability optimization739.480 4.557 292.940 2.93 11.50
      Note: $ M $is the mass of the perforated armor; $ \sigma $ is the surface density of the perforated armor; $L_{\rm{wd}}$ is the lightweight degree
    of the perforated armor.
    下载: 导出CSV
  • [1] CHOCRON S, ANDERSON C E JR, GROSCH D J, et al. Impact of the 7.62 mm APM2 projectile against the edge of a metallic target [J]. International Journal of Impact Engineering, 2001, 25(5): 423–437. doi: 10.1016/S0734-743X(00)00063-4
    [2] BEN-MOSHE D, TARSI Y, ROSENBERG G. An armor assembly for armored vehicles: EP 0209221 [P]. 1986.
    [3] KILIÇ N, BEDIR S, ERDIK A, et al. Ballistic behavior of high hardness perforated armor plates against 7.62 mm armor piercing projectile [J]. Materials & Design, 2014, 63: 427–438.
    [4] MISHRA B, RAMAKRISHNA B, JENA P K, et al. Experimental studies on the effect of size and shape of holes on damage and microstructure of high hardness armour steel plates under ballistic impact [J]. Materials & Design, 2013, 43: 17–24.
    [5] RADISAVLJEVIC I, BALOS S, NIKACEVIC M, et al. Optimization of geometrical characteristics of perforated plates [J]. Materials & Design, 2013, 49: 81–89.
    [6] 王郑. 间隙对穿孔装甲抗弹性能影响的数值分析 [J]. 科技创新与生产力, 2016(2): 87–89. doi: 10.3969/j.issn.1674-9146.2016.02.087

    WANG Z. Numerical analysis about the influence of intervals on the ballistic performance of perforated armor [J]. Sci-Tech Innovation and Productivity, 2016(2): 87–89. doi: 10.3969/j.issn.1674-9146.2016.02.087
    [7] 王建波, 闫慧敏, 范秉源, 等. 弹着点对多孔钢板抗弹性能影响的数值模拟 [J]. 兵器材料科学与工程, 2010, 33(6): 73–75. doi: 10.3969/j.issn.1004-244X.2010.06.022

    WANG J B, YAN H M, FAN B Y, et al. Numerical simulation analysis about the influence of the hitting position on the ballistic performance of the multi-hole steel plate [J]. Ordnance Material Science and Engineering, 2010, 33(6): 73–75. doi: 10.3969/j.issn.1004-244X.2010.06.022
    [8] 胡丽萍, 王智慧, 满红, 等. 孔结构间隙复合装甲位置效应研究 [J]. 兵器材料科学与工程, 2010, 33(1): 89–90. doi: 10.3969/j.issn.1004-244X.2010.01.025

    HU L P, WANG Z H, MAN H, et al. Study on the spot effect of spaced composite armor with multi-holes [J]. Ordnance Material Science and Engineering, 2010, 33(1): 89–90. doi: 10.3969/j.issn.1004-244X.2010.01.025
    [9] 秦庆华, 崔天宁, 施前, 等. 孔结构金属装甲抗弹能力的数值模拟 [J]. 高压物理学报, 2018, 32(5): 055105.

    QIN Q H, CUI T N, SHI Q, et al. Numerical study on ballistic resistance of metal perforated armor to projectile impact [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 055105.
    [10] 肖红亮, 李晓源, 时捷, 等. 倾角效应对高强度钢板抗弹性能的影响 [J]. 兵器材料科学与工程, 2011, 34(6): 36–40.

    XIAO H L, LI X Y, SHI J, et al. Influence of obliquity effect on the ballistic performance of high strength steel plate [J]. Ordnance Material Science and Engineering, 2011, 34(6): 36–40.
    [11] 李换芝. 倾角穿孔装甲对14.5 mm穿燃弹防护性能的影响 [J]. 科技创新与生产力, 2016(2): 90–91, 94. doi: 10.3969/j.issn.1674-9146.2016.02.090

    LI H Z. Influence of oblique perforated armor on the protective performance of the 14.5 mm armor-piercing incendiary [J]. Sci-Tech Innovation and Productivity, 2016(2): 90–91, 94. doi: 10.3969/j.issn.1674-9146.2016.02.090
    [12] 彭吉祥, 崔天宁, 金永喜, 等. 斜孔结构装甲设计及抗弹性能研究 [J]. 应用力学学报, 2021, 38(3): 893–901.

    PENG J X, CUI T N, JIN Y X, et al. Research on design and ballistic resistance of perforated armor with oblique holes [J]. Chinese Journal of Applied Mechanics, 2021, 38(3): 893–901.
    [13] BURIAN W, ŻOCHOWSKI P, GMITRZUK M, et al. Protection effectiveness of perforated plates made of high strength steel [J]. International Journal of Impact Engineering, 2019, 126: 27–39. doi: 10.1016/j.ijimpeng.2018.12.006
    [14] CUI T N, QIN Q H, YAN W M, et al. Ballistic resistance of novel amorphous-alloy-reinforced perforated armor [J]. Acta Mechanica Solida Sinica, 2021, 34(1): 12–26. doi: 10.1007/s10338-020-00180-1
    [15] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics. The Hague, 1983: 541−547.
    [16] 张冬冬, 郭勤涛. Kriging响应面代理模型在有限元模型确认中的应用 [J]. 振动与冲击, 2013, 32(9): 187–191. doi: 10.3969/j.issn.1000-3835.2013.09.036

    ZHANG D D, GUO Q T. Application of Kriging response surface in finite element model validation [J]. Journal of Vibration and Shock, 2013, 32(9): 187–191. doi: 10.3969/j.issn.1000-3835.2013.09.036
    [17] 周宁. ANSYS-APDL高级工程应用实例分析与二次开发 [M]. 北京: 中国水利水电出版社, 2007.
    [18] JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions [J]. Journal of Global Optimization, 1998, 13(4): 455–492. doi: 10.1023/A:1008306431147
    [19] SIMPSON T W, POPLINSKI J D, KOCH P N, et al. Metamodels for computer-based engineering design: survey and recommendations [J]. Engineering with Computers, 2001, 17(2): 129–150. doi: 10.1007/PL00007198
    [20] KRIGE D G. A statistical approach to some basic mine valuation problems on the Witwatersrand [J]. Journal of the Southern African Institute of Mining and Metallurgy, 1951, 52(6): 119–139.
    [21] 郭领. 孔结构金属装甲抗小口径穿甲弹的厚度效应 [D]. 南京: 南京理工大学, 2012.

    GUO L. The thickness effect of metal armor with poerstructure penetrating by Small caliber projectile [D]. Nanjing: Nanjing University of Science & Technology, 2012.
    [22] STANAG N. Protection levels for occupants of logistic and light armoured vehicles [S]. 2004.
    [23] DU X P, CHEN W. Sequential optimization and reliability assessment method for efficient probabilistic design [J]. Journal of Mechanical Design, 2004, 126(2): 225–233. doi: 10.1115/1.1649968
    [24] AOUES Y, CHATEAUNEUF A. Benchmark study of numerical methods for reliability-based design optimization [J]. Structural and Multidisciplinary Optimization, 2010, 41(2): 277–294. doi: 10.1007/s00158-009-0412-2
    [25] HUANG Z L, JIANG C, ZHOU Y S, et al. An incremental shifting vector approach for reliability-based design optimization [J]. Structural and Multidisciplinary Optimization, 2016, 53(3): 523–543. doi: 10.1007/s00158-015-1352-7
    [26] ZHANG Z, DENG W, JIANG C. Sequential approximate reliability-based design optimization for structures with multimodal random variables [J]. Structural and Multidisciplinary Optimization, 2020, 62(2): 511–528. doi: 10.1007/s00158-020-02507-5
  • 加载中
图(9) / 表(9)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  44
  • PDF下载量:  23
出版历程
  • 收稿日期:  2022-01-28
  • 修回日期:  2022-02-26
  • 录用日期:  2022-02-26
  • 网络出版日期:  2022-07-21
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回