外部爆炸载荷下表面粗糙度对45钢柱壳剪切带行为的影响

杨智程 刘龙飞 刘炼煌 殷鹏志 吴志强

杨智程, 刘龙飞, 刘炼煌, 殷鹏志, 吴志强. 外部爆炸载荷下表面粗糙度对45钢柱壳剪切带行为的影响[J]. 高压物理学报, 2022, 36(4): 044106. doi: 10.11858/gywlxb.20220506
引用本文: 杨智程, 刘龙飞, 刘炼煌, 殷鹏志, 吴志强. 外部爆炸载荷下表面粗糙度对45钢柱壳剪切带行为的影响[J]. 高压物理学报, 2022, 36(4): 044106. doi: 10.11858/gywlxb.20220506
YANG Zhicheng, LIU Longfei, LIU Lianhuang, YIN Pengzhi, WU Zhiqiang. Effect of Surface Roughness on Shear Band Behavior of 45 Steel Cylindrical Shell under External Explosion Load[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044106. doi: 10.11858/gywlxb.20220506
Citation: YANG Zhicheng, LIU Longfei, LIU Lianhuang, YIN Pengzhi, WU Zhiqiang. Effect of Surface Roughness on Shear Band Behavior of 45 Steel Cylindrical Shell under External Explosion Load[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044106. doi: 10.11858/gywlxb.20220506

外部爆炸载荷下表面粗糙度对45钢柱壳剪切带行为的影响

doi: 10.11858/gywlxb.20220506
基金项目: 国家自然科学基金(11772127,51704112)
详细信息
    作者简介:

    杨智程(1996-),男,硕士,主要从事冲击动力学研究. E-mail:444356771@qq.com

    通讯作者:

    刘龙飞(1975-),男,博士,教授,主要从事冲击动力学研究. E-mail:lfliu1@hnust.cn

  • 中图分类号: O347; O521.2

Effect of Surface Roughness on Shear Band Behavior of 45 Steel Cylindrical Shell under External Explosion Load

  • 摘要: 通过厚壁圆筒爆轰坍塌实验和有限元数值模拟,研究了45钢柱壳内壁表面粗糙度对其剪切带行为的影响。实验结果表明:外爆加载下,金属柱壳内壁表面粗糙度显著改变试样剪切带的成核位置和数量;当柱壳内壁表面粗糙度增大时,剪切带的数量和长度均增加,部分剪切带的扩展速度也增大;而当柱壳内壁表面的峰谷单元的平均宽度减小时,其剪切带的成核点数量增加,相邻剪切带之间的相互作用增强。有限元模拟和分析结果表明,柱壳中的最大剪切应力产生于柱壳内壁表面峰谷单元的谷底两侧,表面粗糙度的增大和峰谷单元平均宽度的减小均会提升柱壳内表面的剪切应力,促进柱壳中剪切带的成核和扩展,进而导致剪切带成核数量增多,主剪切带发展加快,剪切带屏蔽效应增强。

     

  • 图  45钢样品的粗糙度轮廓线

    Figure  1.  Roughness contour line of 45 steel sample

    图  45钢圆管的表面形貌

    Figure  2.  Surface morphology of 45 steel cylindrical shells

    图  TWC实验装置

    Figure  3.  Thick-walled cylinder experimental device

    图  表面粗糙度的二维模型

    Figure  4.  Two dimensional model of surface roughness

    图  不同应变下柱壳截面的宏观图像

    Figure  5.  Macro picture of cylinder cross section under different strains

    图  不同表面粗糙度样品的剪切带分布(εeff=0.73±0.01)

    Figure  6.  Distribution of shear band of samples with different roughnesses (εeff=0.73±0.01)

    图  不同表面粗糙度样品的剪切带分布(εeff=1.22±0.01)

    Figure  7.  Distribution of shear band in samples with different roughnesses (εeff =1.22±0.01)

    图  Rz=10.0 μm时具有不同表面粗糙度峰谷单元平均宽度的45钢柱壳的等效塑性应变云图(εeff=0.66)

    Figure  8.  Equivalent plastic strain nephogram of 45 steel cylindrical shell with different average widths of peak valley element (Rsm) of surface roughnesses at Rz=10.0 μm (εeff=0.66)

    图  Rz=50.0 μm时具有不同表面粗糙度峰谷单元平均宽度的45钢柱壳等效塑性应变云图(εeff=0.66)

    Figure  9.  Equivalent plastic strain nephogram of 45 steel cylindrical shell with different average widths of peak valley element (Rsm ) of surface roughnesses at Rz=50.0 μm (εeff=0.66)

    图  10  Rz=10.0 μm时具有不同表面粗糙度峰谷单元平均宽度的45钢柱壳的等效塑性应变云图(εeff=1.15)

    Figure  10.  Equivalent plastic strain nephogram of 45 steel cylindrical shell with different average widths of peak valley element (Rsm ) of surface roughnesses at Rz=10.0 μm (εeff=1.15)

    图  11  Rz=50.0 μm时具有不同表面粗糙度峰谷单元平均宽度的45钢柱壳的等效塑性应变云图(εeff =1.15)

    Figure  11.  Equivalent plastic strain nephogram of 45 steel cylindrical shell with different average widths of peak valley element (Rsm) of surface roughnesses at Rz=50.0 μm (εeff=1.15)

    图  12  表面粗糙度对柱壳内表面剪切应力的影响(Rsm=157 μm)

    Figure  12.  Effect of surface roughness on internal surface shear stress of cylindrical shell (Rsm=157 μm)

    图  13  表面粗糙度峰谷单元平均宽度对柱壳内表面剪切应力的影响(Rz=50.0 μm)

    Figure  13.  Effect of surface roughness peak valley element average width on internal surface shear stress of cylindrical shell (Rz=50.0 μm)

    表  1  45钢的化学成分

    Table  1.   Chemical composition of 45 steel %

    CSiMnSPNiCrCuFe
    0.440.230.560.0120.0140.040.060.07Rest
    下载: 导出CSV

    表  2  实验装置的尺寸

    Table  2.   Size of experimental device

    ComponentInternal diameter/mmOuter diameter/mmLength/mmThickness/mm
    Copper stopper1115672
    Specimen1521673
    Copper driver2125672
    Explosive257324
    下载: 导出CSV

    表  3  表面粗糙度模拟参数

    Table  3.   Simulation parameters of surface roughness

    No.Rz/μmRsm/μm
    110471, 235, 157
    250471, 235, 157
    下载: 导出CSV

    表  4  材料的Johnson-Cook本构模型参数[41]

    Table  4.   Johnson-Cook constitutive parameters of materials[41]

    MaterialA/MPaB/MPaCnm
    45 steel5073200.0640.281.06
    Oxygen free copper902920.0250.311.09
    下载: 导出CSV

    表  5  材料的Johnson-Cook失效模型参数

    Table  5.   Johnson-Cook failure parameters of materials

    MaterialD1D2D3D4D5
    45 steel0.100.761.570.005−0.84
    Oxygen free copper0.453.44−2.120.0021.09
    下载: 导出CSV

    表  6  TNT的JWL状态方程参数[42]

    Table  6.   Parameters of JWL equation of state of TNT[42]

    ATNT/GPaBTNT/GPaR1R2ωE/(GJ·m−3)pCJ/GPaρ/(g·cm−3)D/(km·s−1)
    371.23.2314.510.950.37.0211.636.93
    下载: 导出CSV
  • [1] 刘明涛, 汤铁钢. 爆炸加载下金属壳体膨胀断裂过程中的关键物理问题 [J]. 爆炸与冲击, 2021, 41(1): 011402. doi: 10.11883/bzycj-2020-0351

    LIU M T, TANG T G. Key physical problems in the expanding fracture of explosively driven metallic shells [J]. Explosion and Shock Waves, 2021, 41(1): 011402. doi: 10.11883/bzycj-2020-0351
    [2] 朱建士, 陈裕泽. 核武器研制中的力学问题 [J]. 力学与实践, 2002, 24(1): 67–71. doi: 10.3969/j.issn.1000-0879.2002.01.024

    ZHU J S, CHEN Y Z. The mechanics of nuclear weapons development [J]. Mechanics in Engineering, 2002, 24(1): 67–71. doi: 10.3969/j.issn.1000-0879.2002.01.024
    [3] MOTT N F. A theory of the fragmentation of shells and bombs [M]//GRADY D. Fragmentation of Rings and Shells: The Legacy of N. F. Mott. Berlin: Springer Publishing, 2006: 243−294.
    [4] 任国武, 温上捷, 张茹, 等. 约束层对金属柱壳膨胀变形影响的数值模拟 [J]. 爆炸与冲击, 2017, 37(6): 946–951. doi: 10.11883/1001-1455(2017)06-0946-06

    REN G W, WEN S J, ZHANG R, et al. Numerical simulation of influence of constrained layer on expanding deformation of metal cylindrical shell [J]. Explosion and Shock Waves, 2017, 37(6): 946–951. doi: 10.11883/1001-1455(2017)06-0946-06
    [5] 杨云川, 朱建军, 郑宇, 等. 战斗部壳体爆炸破片体/线分形维数研究 [J]. 兵工学报, 2018, 39(8): 1499–1506. doi: 10.3969/j.issn.1000-1093.2018.08.006

    YANG Y C, ZHU J J, ZHENG Y, et al. Research on the volume and line fractal dimensions of fragments from the explosion of warhead shell [J]. Acta Armamentarii, 2018, 39(8): 1499–1506. doi: 10.3969/j.issn.1000-1093.2018.08.006
    [6] 汤铁钢, 胡海波, 李庆忠, 等. 外部爆轰加载过程中金属圆管断裂实验研究 [J]. 爆炸与冲击, 2002, 22(4): 333–337. doi: 10.3321/j.issn:1001-1455.2002.04.008

    TANG T G, HU H B, LI Q Z, et al. Studies on the fracture of steel cycinder under external explosive loading [J]. Explosion and Shock Waves, 2002, 22(4): 333–337. doi: 10.3321/j.issn:1001-1455.2002.04.008
    [7] 刘龙飞, 周强. 表面粗糙度对6061铝合金薄壁管冲击膨胀断裂性能的影响 [J]. 爆炸与冲击, 2018, 38(4): 749–758. doi: 10.11883/bzycj-2016-0389

    LIU L F, ZHOU Q. Effect of surface roughness on impact expansion fracture of 6061 aluminum alloy thin-walled cylindrical tube [J]. Explosion and Shock Waves, 2018, 38(4): 749–758. doi: 10.11883/bzycj-2016-0389
    [8] 胡海波, 汤铁钢, 胡八一, 等. 金属柱壳在爆炸加载断裂中的单旋现象 [J]. 爆炸与冲击, 2004, 24(2): 97–107. doi: 10.3321/j.issn:1001-1455.2004.02.001

    HU H B, TANG T G, HU B Y, et al. An study of uniform shear bands orientation selection tendency on explosively loaded cylindrical shells [J]. Explosion and Shock Waves, 2004, 24(2): 97–107. doi: 10.3321/j.issn:1001-1455.2004.02.001
    [9] MEYERS M A, NESTERENKO V F, LASALVIA J C, et al. Shear localization in dynamic deformation of materials: microstructural evolution and self-organization [J]. Materials Science and Engineering: A, 2001, 317(1/2): 204–225. doi: 10.1016/S0921-5093(01)01160-1
    [10] 罗渝松, 李伟兵, 陈志闯, 等. 内爆加载下金属柱壳的冻结回收方法 [J]. 爆炸与冲击, 2020, 40(10): 104101. doi: 10.11883/bzycj-2020-0041

    LUO Y S, LI W B, CHEN Z C, et al. A freezing recovery method for metallic cylinder shells under internal explosive loading [J]. Explosion and Shock Waves, 2020, 40(10): 104101. doi: 10.11883/bzycj-2020-0041
    [11] 吴文苍, 董新龙, 庞振, 等. TA2钛合金开口柱壳外爆碎片分布研究 [J]. 力学学报, 2021, 53(6): 1795–1806. doi: 10.6052/0459-1879-21-017

    WU W C, DONG X L, PANG Z, et al. Study on fragments distribution of explosively driven cylinders for TA2 titanium alloy [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1795–1806. doi: 10.6052/0459-1879-21-017
    [12] 汤铁钢, 李庆忠, 孙学林, 等. 45钢柱壳膨胀断裂的应变率效应 [J]. 爆炸与冲击, 2006, 26(2): 129–133. doi: 10.11883/1001-1455(2006)02-0129-05

    TANG T G, LI Q Z, SUN X L, et al. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation [J]. Explosion and Shock Waves, 2006, 26(2): 129–133. doi: 10.11883/1001-1455(2006)02-0129-05
    [13] 禹富有, 董新龙, 俞鑫炉, 等. 不同填塞装药下金属柱壳断裂特性的实验研究 [J]. 兵工学报, 2019, 40(7): 1418–1424. doi: 10.3969/j.issn.1000-1093.2019.07.011

    YU F Y, DONG X L, YU X L, et al. Fracture characteristics of metal cylinder shells with different charges [J]. Acta Armamentarii, 2019, 40(7): 1418–1424. doi: 10.3969/j.issn.1000-1093.2019.07.011
    [14] NESTERENKO V F, LAZARIDI A N, PERSHIN S A. Localization of deformation in copper by explosive compression of hollow cylinders [J]. Fizika Goreniyai Vzryva, 1989, 25(4): 154–155.
    [15] CHEN Y J, MEYERS M A, NESTERENKO V F. Spontaneous and forced shear localization in high-strain-rate deformation of tantalum [J]. Materials Science and Engineering: A, 1999, 268(1/2): 70–82. doi: 10.1016/S0921-5093(99)00110-0
    [16] LOVINGER Z, RITTEL D, ROSENBERG Z. An experimental study on spontaneous adiabatic shear band formation in electro-magnetically collapsing cylinders [J]. Journal of the Mechanics and Physics of Solids, 2015, 79: 134–156. doi: 10.1016/j.jmps.2015.04.007
    [17] 杨涛, 刘龙飞, 杨智程, 等. 表面粗糙度对TC4钛合金柱壳剪切带形成的影响 [J]. 力学学报, 2021, 53(3): 813–822. doi: 10.6052/0459-1879-20-433

    YANG T, LIU L F, YANG Z C, et al. Effect of surface roughness on the formation of shear band in Ti-6Al-4V alloy cylindrical shell [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 813–822. doi: 10.6052/0459-1879-20-433
    [18] NESTERENKO V F, BONDAR M P. Investigation of deformation localization by the “thick-walled cylinder” method [J]. DYMAT Journal, 1994, 1(3): 245–251.
    [19] NESTERENKO V F, XUE Q, MEYERS M A. Self-organization of shear bands in stainless steel: grain size effect [J]. Journal of Physics (Ⅳ), 2000, 10: 269–274.
    [20] MEYERS M A, XUE Q, NESTERENKO V F. Evolution in the patterning of adiabatic shear bands [J]. AIP Conference Proceedings, 2002, 620(1): 567–570. doi: 10.1063/1.1483602
    [21] 黄西成. 内爆与外爆加载下壳体的力学状态及破坏模式分析 [D]. 北京: 中国工程物理研究院, 2010.

    HUANG X C. Analysis of mechanical states and failure modes of shells subjected to implosive and explosive loadings [D]. Beijing: China Academy of Engineering Physics, 2010.
    [22] YANG Y, LI X M, CHEN S W, et al. Effects of pre-notches on the self-organization behaviors of shear bands in aluminum alloy [J]. Materials Science and Engineering: A, 2010, 527(20): 5084–5091. doi: 10.1016/j.msea.2010.04.079
    [23] 任国武, 郭昭亮, 汤铁钢, 等. 高应变率加载下金属柱壳断裂的实验研究 [J]. 兵工学报, 2016, 37(1): 77–82. doi: 10.3969/j.issn.1000-1093.2016.01.012

    REN G W, GUO Z L, TANG T G, et al. Experimental research on fracture of metal case under loading at high strain rate [J]. Acta Armamentarii, 2016, 37(1): 77–82. doi: 10.3969/j.issn.1000-1093.2016.01.012
    [24] 汤铁钢, 谷岩, 李庆忠, 等. 爆轰加载下金属柱壳膨胀破裂过程研究 [J]. 爆炸与冲击, 2003, 23(6): 529–533. doi: 10.3321/j.issn:1001-1455.2003.06.008

    TANG T G, GU Y, LI Q Z, et al. Expanding fracture of steel cylinder shell by detonation driving [J]. Explosion and Shock Waves, 2003, 23(6): 529–533. doi: 10.3321/j.issn:1001-1455.2003.06.008
    [25] 张世文, 金山, 刘仓理. 含缺陷厚壁圆管爆轰膨胀断裂的数值模拟 [J]. 应用力学学报, 2010, 27(3): 622–625.

    ZHANG S W, JIN S, LIU C L. Simulation of the dynamic expanding process of thick-walled cylinder with defects [J]. Chinese Journal of Applied Mechanics, 2010, 27(3): 622–625.
    [26] 任国武, 郭昭亮, 张世文, 等. 金属柱壳膨胀断裂的实验与数值模拟 [J]. 爆炸与冲击, 2015, 35(6): 895–900. doi: 10.11883/1001-1455(2015)06-0895-06

    REN G W, GUO Z L, ZHANG S W, et al. Experiment and numerical simulation on expansion deformation and fracture of cylindrical shell [J]. Explosion and Shock Waves, 2015, 35(6): 895–900. doi: 10.11883/1001-1455(2015)06-0895-06
    [27] 宋鹏飞, 董新龙, 周刚毅, 等. 帽型试样绝热剪切演化实验及数值模拟 [J]. 宁波大学学报(理工版), 2018, 31(2): 50–54. doi: 10.3969/j.issn.1001-5132.2018.02.010

    SONG P F, DONG X L, ZHOU G Y, et al. Experimental and numerical analysis of adiabatic shear evolution in hat-shaped specimen [J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2018, 31(2): 50–54. doi: 10.3969/j.issn.1001-5132.2018.02.010
    [28] REMINGTON T P, OWEN J M, NAKAMURA A M, et al. Numerical simulations of laboratory-scale, hypervelocity-impact experiments for asteroid-deflection code validation [J]. Earth and Space Science, 2020, 7(4): e2018EA000474. doi: 10.1029/2018EA000474
    [29] 滕凌虹, 曹伟伟, 朱波, 等. ABAQUS在模拟弹丸高低速冲击金属和复合材料靶板方面的应用及研究进展 [J]. 材料导报, 2021, 35(11): 11145–11153. doi: 10.11896/cldb.19110218

    TENG L H, CAO W W, ZHU B, et al. Application and development of ABAQUS in simulating high and low velocity impact metallic and composite targets of projectiles [J]. Materials Reports, 2021, 35(11): 11145–11153. doi: 10.11896/cldb.19110218
    [30] 吴思思, 董新龙, 俞鑫炉. 45钢柱壳爆炸膨胀断裂的SPH模拟分析 [J]. 爆炸与冲击, 2021, 41(10): 103101. doi: 10.11883/bzycj-2021-0172

    WU S S, DONG X L, YU X L. An investigating on explosive expanding fracture of 45 steel cylinders by SPH method [J]. Explosion and Shock Waves, 2021, 41(10): 103101. doi: 10.11883/bzycj-2021-0172
    [31] 谢富佩, 徐绯, 曾卓, 等. 复合圆柱壳冲击压缩数值模拟及稳定性研究 [J]. 爆炸与冲击, 2021, 41(11): 112201. doi: 10.11883/bzycj-2020-0431

    XIE F P, XU F, ZENG Z, et al. Numerical simulation on stability of composite cylindrical shell under impact compression [J]. Explosion and Shock Waves, 2021, 41(11): 112201. doi: 10.11883/bzycj-2020-0431
    [32] 彭克锋, 崔世堂, 潘昊, 等. 冲击载荷作用下柱壳链中的弹性波传播简化模型及其解析解 [J]. 爆炸与冲击, 2021, 41(1): 011403. doi: 10.11883/bzycj-2020-0246

    PENG K F, CUI S T, PAN H, et al. Simplified model of elastic wave propagation in cylindrical shell chain under impact load and its analytical solution [J]. Explosion and Shock Waves, 2021, 41(1): 011403. doi: 10.11883/bzycj-2020-0246
    [33] 舒旗, 董新龙, 俞鑫炉. 基于Hopkinson压杆的M型试样动态拉伸实验方法研究 [J]. 爆炸与冲击, 2020, 40(8): 084101. doi: 10.11883/bzycj-2019-0433

    SHU Q, DONG X L, YU X L. A dynamic tensile method for M-shaped specimen loaded by Hopkinson pressure bar [J]. Explosion and Shock Waves, 2020, 40(8): 084101. doi: 10.11883/bzycj-2019-0433
    [34] 刘明涛. 剪切带演化模型及其在模拟柱壳内外爆剪切失稳中的应用 [D]. 合肥: 中国科学技术大学, 2014.

    LIU M T. A multi-stage probabilistic model for shear band and its application in expanding fracture of cylinder and thick-walled cylinder [D]. Hefei: University of Science and Technology of China, 2014.
    [35] LIU M T, REN G W, FAN C, et al. Experimental and numerical studies on the expanding fracture behavior of an explosively driven 1045 steel cylinder [J]. International Journal of Impact Engineering, 2017, 109: 240–252. doi: 10.1016/j.ijimpeng.2017.07.008
    [36] LOVINGER Z, RITTEL D, ROSENBERG Z. Modeling spontaneous adiabatic shear band formation in electro-magnetically collapsing thick-walled cylinders [J]. Mechanics of Materials, 2018, 116: 130–145. doi: 10.1016/j.mechmat.2017.01.010
    [37] 胡昌明, 贺红亮, 胡时胜. 45号钢的动态力学性能研究 [J]. 爆炸与冲击, 2003, 23(2): 188–192. doi: 10.3321/j.issn:1001-1455.2003.02.017

    HU C M, HE H L, HU S S. A study on dynamic mechancial behaviors of 45 steel [J]. Explosion and Shock Waves, 2003, 23(2): 188–192. doi: 10.3321/j.issn:1001-1455.2003.02.017
    [38] 宫能平, 李贤. 45#钢动态断裂韧性测试的试验研究 [J]. 安徽理工大学学报(自然科学版), 2007, 27(4): 65–68.

    GONG N P, LI X. Experimental study of dynamic fracture toughness of 45# steel [J]. Journal of Anhui University of Science and Technology (Natural Science), 2007, 27(4): 65–68.
    [39] 俞鑫炉, 董新龙, 潘顺吉. 不同爆炸载荷下TA2钛合金圆管膨胀破坏过程 [J]. 爆炸与冲击, 2018, 38(1): 148–154. doi: 10.11883/bzycj-2017-0014

    YU X L, DONG X L, PAN S J. Fracture behaviors of explosively driven TA2 alloy cylinders under different loadings [J]. Explosion and Shock Waves, 2018, 38(1): 148–154. doi: 10.11883/bzycj-2017-0014
    [40] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Engineering Fracture Mechanics, 1983, 21: 541–548.
    [41] 汤祁. 面向45#钢切削残余应力仿真的JC本构模型参数和刀: 屑摩擦系数的确定 [D]. 武汉: 华中科技大学, 2015.

    TANG Q. Identification of JC constitutive model parameters and tool-chip friction coefficient for 45# steel cutting residual stress simulation [D]. Wuhan: Huazhong University of Science and Technology, 2015.
    [42] 宋浦, 杨凯, 梁安定, 等. 国内外TNT炸药的JWL状态方程及其能量释放差异分析 [J]. 火炸药学报, 2013, 36(2): 42–45. doi: 10.3969/j.issn.1007-7812.2013.02.010

    SONG P, YANG K, LIANG A D, et al. Difference analysis on JWL-EOS and energy release of different TNT charge [J]. Chinese Journal of Explosives & Propellants, 2013, 36(2): 42–45. doi: 10.3969/j.issn.1007-7812.2013.02.010
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  100
  • PDF下载量:  18
出版历程
  • 收稿日期:  2022-01-27
  • 修回日期:  2022-03-02
  • 网络出版日期:  2022-07-19
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回