层合多孔圆柱壳的轴向冲击吸能特性

贺璞 邓庆田 李新波

贺璞, 邓庆田, 李新波. 层合多孔圆柱壳的轴向冲击吸能特性[J]. 高压物理学报, 2022, 36(4): 044203. doi: 10.11858/gywlxb.20210909
引用本文: 贺璞, 邓庆田, 李新波. 层合多孔圆柱壳的轴向冲击吸能特性[J]. 高压物理学报, 2022, 36(4): 044203. doi: 10.11858/gywlxb.20210909
HE Pu, DENG Qingtian, LI Xinbo. Energy Absorption Characteristics of Laminated Cellular Cylindrical Shell under Axial Impact[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044203. doi: 10.11858/gywlxb.20210909
Citation: HE Pu, DENG Qingtian, LI Xinbo. Energy Absorption Characteristics of Laminated Cellular Cylindrical Shell under Axial Impact[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044203. doi: 10.11858/gywlxb.20210909

层合多孔圆柱壳的轴向冲击吸能特性

doi: 10.11858/gywlxb.20210909
基金项目: 中央高校基本科研业务费专项资金(310812163504)
详细信息
    作者简介:

    贺 璞(1996-),男,硕士研究生,主要从事多孔结构承载与吸能研究.E-mail:hepu96@126.com

    通讯作者:

    邓庆田(1980-),男,博士,副教授,主要从事多孔材料与结构力学性能研究.E-mail:dengqt@chd.edu.cn

  • 中图分类号: O347.1

Energy Absorption Characteristics of Laminated Cellular Cylindrical Shell under Axial Impact

  • 摘要: 为提高圆柱壳结构在轴向冲击载荷下的力学响应,设计了多层层合多孔圆柱壳结构,通过改变层合方式以及孔单元数目研究其力学行为。通过准静态压缩实验验证有限元分析的有效性,使用有限元模拟方法研究了结构在轴向冲击载荷下的变形模式和吸能特性。从层合多孔圆柱壳的压缩力-位移曲线得到总吸能、峰值压缩力和平均压缩力等指标。对比不同模型之间的吸能和压缩力特性,结果表明:改变层合方式对圆柱壳吸能效果影响较显著,增加孔单元数目对多孔圆柱壳吸能效果影响较小。对比正、负泊松比两种多孔圆柱壳,同等质量内凹圆柱壳总吸能较六边圆柱壳平均提高了17%。

     

  • 图  不同层合方式的圆柱壳模型

    Figure  1.  Cylindrical shell models withdifferent laminated ways

    图  不同孔单元数目的圆柱壳模型

    Figure  2.  Cylindrical shell models withdifferent cells number

    图  PLA层合多孔圆柱壳

    Figure  3.  Laminated cellular cylindrical shell of PLA material

    图  ABAQUS有限元模型

    Figure  4.  Finite element model in ABAQUS

    图  PLA材料的压缩实验与应力-应变曲线

    Figure  5.  Compression experiment and stress-strain curve of PLA material

    图  实验与数值模拟得到的力-位移曲线对比

    Figure  6.  Comparisons of compressive force-displacement curves between experiment and simulation

    图  实验与数值模拟得到的变形模式对比

    Figure  7.  Comparisons of deformation mode between experiment and simulation

    图  3种尺寸网格的有限元仿真模型

    Figure  8.  Finite element simulation models of three kinds of meshes

    图  网格敏感性验证

    Figure  9.  Validation of mesh sensitivity

    图  10  伪应变能与内能之比

    Figure  10.  Ratio of artificial strain energy to internal energy

    图  11  六边多孔圆柱壳在不同冲击速度下的变形模式

    Figure  11.  Deformation mode of hexagonal cellular cylindrical shell at different impact velocities

    图  12  内凹多孔圆柱壳变形模式

    Figure  12.  Deformation mode of re-entrant cellular cylindrical shell

    图  13  不同层合方式多孔圆柱壳的力-位移曲线

    Figure  13.  Compressive force-displacement curves of cellular cylindrical shell with different laminated ways

    图  14  不同孔数多孔圆柱壳的力-位移曲线

    Figure  14.  Compressive force-displacement curves of cellular cylindrical shell with different cells number

    表  1  层合多孔圆柱壳的几何尺寸

    Table  1.   Geometric dimensions of laminated cellular cylindrical shell

    Number of axial cellNumber of circumferential cellThickness of each layer/mmHeight/mmDiameter/mm
    8242/210678.4
    12 362/210678.4
    16 482/210678.4
    8241/2/110678.4
    8241/1/1/110678.4
    下载: 导出CSV

    表  2  不同层合方式下的冲击吸能指标

    Table  2.   Impact energy absorption parameters of different laminated way

    Cellular unitsLayer numberEt/JFp/kNFa/kN
    Hexagon21 206.029.912.2
    31 032.143.911.0
    41 414.332.614.5
    Re-entrant21 416.730.813.7
    31 264.648.611.8
    41 673.532.617.0
    下载: 导出CSV

    表  3  不同孔数多孔圆柱壳的冲击吸能指标

    Table  3.   Impact energy absorption parameters of of cellular cylindrical shell with different cells number

    Cellular unitsCell numberEt/JFp/kNFa/kN
    Hexagon8×241 206.029.912.2
    12×361 169.725.811.2
    16×481 266.429.411.9
    Re-entrant8×241 416.730.813.7
    12×361 383.428.913.4
    16×481 394.039.613.3
    下载: 导出CSV
  • [1] 解江, 张雪晗, 苏璇, 等. 铺层顺序对复合材料薄壁圆管轴向压溃吸能特性的影响研究 [J]. 工程力学, 2018, 35(6): 231–239.

    XIE J, ZHANG X H, SU X, et al. Influence of layer sequence on energy absorption characteristics of thin-walled composite circular tubes under axial compression [J]. Engineering Mechanics, 2018, 35(6): 231–239.
    [2] 李金柱, 齐凯丽, 袁婷, 等. 冲击载荷下金属薄壁圆柱壳动态响应特性研究 [J]. 北京理工大学学报, 2020, 40(4): 362–368.

    LI J Z, QI K L, YUAN T, et al. Dynamic response of thin-walled cylindrical shells suffering impact loading [J]. Transactions of Beijing Institute of Technology, 2020, 40(4): 362–368.
    [3] 何强, 王勇辉, 史肖娜, 等. 引入Sierpinski层级特性的新型薄壁多胞管轴向冲击吸能特性 [J]. 爆炸与冲击, 2020, 40(12): 123101.

    HE Q, WANG Y H, SHI X N, et al. Energy absorption of new thin-walled, multi-cellular, tubular structures with Sierpinski hierarchical characteristics under axial impact [J]. Explosion and Shock Waves, 2020, 40(12): 123101.
    [4] 张雨, 李应刚, 沈云龙, 等. 蜂窝金属夹芯板重复冲击动态响应研究 [J]. 振动与冲击, 2021, 40(4): 255–260.

    ZHANG Y, LI Y G, SHEN Y L, et al. Dynamic responses of honeycomb sandwich panels under repeated impacts [J]. Journal of Vibration and Shock, 2021, 40(4): 255–260.
    [5] 虞科炯, 徐峰祥, 华林. 正弦曲边负泊松比蜂窝结构面内冲击性能研究 [J]. 振动与冲击, 2021, 40(13): 51–59.

    YU K J, XU F X, HUA L. In plane impact performance of honeycomb structure with sinusoidal curved edge and negative Poisson’s ratio [J]. Journal of Vibration and Shock, 2021, 40(13): 51–59.
    [6] 王璠, 何一帆, 宋毅, 等. 引发方式、铺层对纤维增强复合材料圆柱壳吸能特性影响的冲击试验研究 [J]. 振动工程学报, 2013, 26(1): 33–40. doi: 10.3969/j.issn.1004-4523.2013.01.006

    WANG F, HE Y F, SONG Y, et al. The impact experimental study of evoking type and Layup type on absorption energy of fiber reinforced composite cylindrical shell [J]. Journal of Vibration Engineering, 2013, 26(1): 33–40. doi: 10.3969/j.issn.1004-4523.2013.01.006
    [7] 罗国强, 费细欢, 喻寅, 等. 孔洞排布对PMMA多孔材料冲击响应行为的影响 [J]. 高压物理学报, 2020, 34(5): 054202. doi: 10.11858/gywlxb.20200542

    LUO G Q, FEI X H, YU Y, et al. Effect of voids arrangement on behavior of PMMA cellular materials on impact loading [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 054202. doi: 10.11858/gywlxb.20200542
    [8] BICH D H, DUNG D V, NAM V H, et al. Nonlinear static and dynamic buckling analysis of imperfect eccentrically stiffened functionally graded circular cylindrical thin shells under axial compression [J]. International Journal of Mechanical Sciences, 2013, 74: 190–200. doi: 10.1016/j.ijmecsci.2013.06.002
    [9] ZHANG X, ZHANG H. Energy absorption of multi-cell stub columns under axial compression [J]. Thin-Walled Structures, 2013, 68: 156–163. doi: 10.1016/j.tws.2013.03.014
    [10] 杨欣, 范晓文, 许述财, 等. 仿虾螯结构薄壁管设计及耐撞性分析 [J]. 爆炸与冲击, 2020, 40(4): 043301. doi: 10.11883/bzycj-2019-0280

    YANG X, FAN X W, XU S C, et al. Design and crashworthiness analysis of thin-walled tubes based on a shrimp chela structure [J]. Explosion and Shock Waves, 2020, 40(4): 043301. doi: 10.11883/bzycj-2019-0280
    [11] 刘亚军, 何玉龙, 刘姗姗, 等. 正多边形基多胞薄壁管的吸能特性 [J]. 爆炸与冲击, 2020, 40(7): 071404. doi: 10.11883/bzycj-2019-0423

    LIU Y J, HE Y L, LIU S S, et al. Energy absorption capacity of regular polygon-based multi-cell tubes [J]. Explosion and Shock Waves, 2020, 40(7): 071404. doi: 10.11883/bzycj-2019-0423
    [12] 张天辉, 邓健强, 刘志芳, 等. 弧形折纸模式薄壁结构的压缩变形与能量吸收 [J]. 爆炸与冲击, 2020, 40(7): 071405. doi: 10.11883/bzycj-2019-0355

    ZHANG T H, DENG J Q, LIU Z F, et al. Compression deformation and energy absorption of thin-walled structures with arc-shaped origami patterns [J]. Explosion and Shock Waves, 2020, 40(7): 071405. doi: 10.11883/bzycj-2019-0355
    [13] 杨智春, 邓庆田. 负泊松比材料与结构的力学性能研究及应用 [J]. 力学进展, 2011, 41(3): 335–350. doi: 10.6052/1000-0992-2011-3-lxjzJ2011-013

    YANG Z C, DENG Q T. Mechanical property and application of materials and structures with negative Poisson’s ratio [J]. Advances in Mechanics, 2011, 41(3): 335–350. doi: 10.6052/1000-0992-2011-3-lxjzJ2011-013
    [14] 张越, 李世强, 王志华, 等. 二阶层级自相似四边形蜂窝动力压缩行为数值模拟 [J]. 高压物理学报, 2017, 31(4): 358–363. doi: 10.11858/gywlxb.2017.04.002

    ZHANG Y, LI S Q, WANG Z H, et al. Dynamic crushing response of seif-similar second order hierarchical square honeycombs [J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 358–363. doi: 10.11858/gywlxb.2017.04.002
    [15] 王根伟, 刘冕, 宋辉, 等. 冲击载荷下径向密度排布对泡沫金属力学性能影响的研究 [J]. 爆炸与冲击, 2020, 40(7): 071401. doi: 10.11883/bzycj-2019-0403

    WANG G W, LIU M, SONG H, et al. Influence of radial density arrangement on mechanical properties of metal foam under impact loading [J]. Explosion and Shock Waves, 2020, 40(7): 071401. doi: 10.11883/bzycj-2019-0403
    [16] 王仁, 韩铭宝, 黄筑平, 等. 受轴向冲击的圆柱壳塑性动力屈曲实验研究 [J]. 力学学报, 1983, 19(5): 509–514.

    WANG R, HAN M B, HUANG Z P, et al. Dynamic plastic buckling of cylindrical shell under axial impact: an experimental study [J]. Chinese Journal of Theoretical and Applied Mechanics, 1983, 19(5): 509–514.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  48
  • PDF下载量:  16
出版历程
  • 收稿日期:  2021-11-23
  • 修回日期:  2021-12-11
  • 录用日期:  2022-04-07
  • 网络出版日期:  2022-06-23
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回