高温高速同步弹道冲击试验方法

谭学明 郭伟国

谭学明, 郭伟国. 高温高速同步弹道冲击试验方法[J]. 高压物理学报, 2022, 36(4): 043301. doi: 10.11858/gywlxb.20210900
引用本文: 谭学明, 郭伟国. 高温高速同步弹道冲击试验方法[J]. 高压物理学报, 2022, 36(4): 043301. doi: 10.11858/gywlxb.20210900
TAN Xueming, GUO Weiguo. High-Temperature and High-Speed Synchronous Ballistic Impact Test Method[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 043301. doi: 10.11858/gywlxb.20210900
Citation: TAN Xueming, GUO Weiguo. High-Temperature and High-Speed Synchronous Ballistic Impact Test Method[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 043301. doi: 10.11858/gywlxb.20210900

高温高速同步弹道冲击试验方法

doi: 10.11858/gywlxb.20210900
基金项目: 国家自然科学基金(11872051,12072287)
详细信息
    作者简介:

    谭学明(1987-),男,博士研究生,主要从事冲击动力学研究. E-mail:tanxueming19870620@163.com

    通讯作者:

    郭伟国(1960-),男,博士,教授,主要从事材料的冲击动力学研究. E-mail:weiguo@nwpu.edu.cn

  • 中图分类号: O521.3; O347.3

High-Temperature and High-Speed Synchronous Ballistic Impact Test Method

  • 摘要: 为研究高温高速冲击载荷作用下GH4169镍基高温合金靶板的变形和破坏行为,在已有的弹道冲击气炮基础上增加了靶板的高温加载装置、弹体发射和高温炉体同步分离结构。针对尺寸为160 mm×160 mm×2 mm的GH4169靶板进行了高温高速弹道冲击试验方法验证。结果表明:该装置可实现温度高于500 ℃、速度大于320.0 m/s的高温弹道冲击试验。在弹体冲击靶板过程中,靶板正反面的温度差小于0.1%,靶板的面内温度差小于2.6%。对GH4169靶板进行了高、低温弹道冲击试验,结果表明,在500 ℃高温条件下,由冲击造成的靶板全局变形范围较常温条件下小29.5%,高温条件下GH4169靶板的抗冲击性能优于常温试验结果。

     

  • 图  试验装置系统示意图

    Figure  1.  Schematic diagram of test device system

    图  高温弹道冲击靶板试验装置

    Figure  2.  Test device of ballistic impact at high temperature

    图  高温同步控制示意图

    Figure  3.  Schematic diagram of high temperature synchronous control

    图  升温过程中测点温度随时间变化曲线

    Figure  4.  Curves of temperature change of monitoring points with time at elevated temperature

    图  移除高温炉后靶板测点温度随时间的变化曲线

    Figure  5.  Temperature curves of monitoring pointwith time after furnace removed

    图  弹丸冲击速度v0与时间间隔tz的关系曲线

    Figure  6.  Relationship between impact velocity of the projectile v0 and time interval tz

    图  弹丸冲击速度与测点温度的关系

    Figure  7.  Relationship between impact velocity of projectileand temperature of monitoring points

    图  常温条件下弹道冲击靶板的损伤情况

    Figure  8.  Damage of the target under ballistic impact at room temperature

    图  500 ℃高温条件下弹道冲击靶板的损伤情况

    Figure  9.  Damage of the target under ballistic impact at 500 ℃

    图  10  500 ℃高温冲击下靶板的局部损伤和裂纹情况

    Figure  10.  Local damage and crack of the target under high temperature impact at 500 ℃

    图  11  弹道冲击靶板花瓣形裂纹的局部损伤情况

    Figure  11.  Local damage of the petal cracks of the ballistic impact targets

    表  1  弹道冲击计算的相关参数

    Table  1.   Calculation parameters of ballistic impact

    Sf/m2m/kgVcq/m3$\gamma $R/(J·mol−1·K−1)T/K$\,\mu $g/(kg·mol−1)L/m
    4.91×10−40.0542.18×10−21.418.313002.8×10−25
    下载: 导出CSV
  • [1] GUPTA P K, IQBAL M A, MOHAMMAD Z, et al. Energy absorption in thin metallic targets subjected to oblique projectile impact: a numerical study [J]. Thin-Walled Structures, 2018, 126: 58–67. doi: 10.1016/j.tws.2017.08.005
    [2] IQBAL M A, GUPTA P K, DEORE V S, et al. Effect of target span and configuration on the ballistic limit [J]. International Journal of Impact Engineering, 2012, 42: 11–24. doi: 10.1016/j.ijimpeng.2011.10.004
    [3] 邹品. GH4169高温动态本构模型与高速冲击性能研究 [D]. 南京: 南京航空航天大学, 2017: 34−36.

    ZOU P. Research on dynamic constitutive model at high temperatures and high speed impact performance of GH4169 [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 34−36.
    [4] 郑百林, 杨彪, 刘焦, 等. 一种用于高温条件下的弹道冲击实验装置: CN201810600720. X [P]. 2018−11−30.

    ZHENG B L, YANG B, LIU J, et al. Ballistic impact experimental device applied to high temperature condition: CN201810600720. X [P]. 2018−11−30.
    [5] LIU J, ZHENG B L, ZHANG K, et al. Ballistic performance and energy absorption characteristics of thin nickel-based alloy plates at elevated temperatures [J]. International Journal of Impact Engineering, 2019, 126: 160–171. doi: 10.1016/j.ijimpeng.2018.12.012
    [6] 刘焦, 郑百林, 杨彪, 等. 镍基合金薄板不同温度下的弹道冲击行为 [J]. 航空材料学报, 2019, 39(1): 79–88. doi: 10.11868/j.issn.1005-5053.2018.000045

    LIU J, ZHENG B L, YANG B, et al. Ballistic impact behavior of thin nickel-base alloy plates at different temperatures [J]. Journal of Aeronautical Materials, 2019, 39(1): 79–88. doi: 10.11868/j.issn.1005-5053.2018.000045
    [7] YANG Y, XU F, GAO X Y, et al. Impact resistance of 2D plain-woven C/SiC composites at high temperature [J]. Materials & Design, 2016, 90: 635–641. doi: 10.1016/j.matdes.2015.11.024
    [8] ERICE B, PÉREZ-MARTÍN M J, GÁLVEZ F. An experimental and numerical study of ductile failure under quasi-static and impact loadings of Inconel 718 nickel-base superalloy [J]. International Journal of Impact Engineering, 2014, 69: 11–24. doi: 10.1016/j.ijimpeng.2014.02.007
    [9] XIE W H, MENG S H, DING L, et al. High velocity impact tests on high temperature carbon-carbon composites [J]. Composites Part B: Engineering, 2016, 98: 30–38. doi: 10.1016/j.compositesb.2016.05.031
    [10] 丁俊豪, 李恒, 边天军, 等. 电塑性及电流辅助成形研究动态及展望 [J]. 航空学报, 2018, 39(1): 021201. doi: 10.7527/S1000-6893.2017.021201

    DING J H, LI H, BIAN T J, et al. Electroplasticity and electrically-assisted forming: a critical review [J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 021201. doi: 10.7527/S1000-6893.2017.021201
    [11] ZHONG L P, SI J Y, ZHENG Z Q. Effect of temperature on impact properties of ZA27 alloy [J]. Advanced Materials Research, 2012, 476/478: 75–80. doi: 10.4028/www.scientific.net/AMR.476-478.75
    [12] ROJACZ H, HUTTERER M, WINKELMANN H. High temperature single impact studies on material deformation and fracture behaviour of metal matrix composites and steels [J]. Materials Science and Engineering: A, 2013, 562: 39–45. doi: 10.1016/j.msea.2012.11.030
    [13] TAN X M, GUO W G, GAO X S, et al. A new technique for conducting split Hopkinson tensile bar test at elevated temperatures [J]. Experimental Techniques, 2017, 41(2): 191–201. doi: 10.1007/s40799-017-0167-4
    [14] WANG J J, GUO W G, GAO X S, et al. The third-type of strain aging and the constitutive modeling of a Q235B steel over a wide range of temperatures and strain rates [J]. International Journal of Plasticity, 2015, 65: 85–107. doi: 10.1016/j.ijplas.2014.08.017
    [15] 苏红星, 赵俊利, 彭双志. 气体炮弹丸初速的影响因素分析 [J]. 弹箭与制导学报, 2018, 38(1): 105–108, 113. doi: 10.15892/j.cnki.djzdxb.2018.01.025

    SU H X, ZHAO J L, PENG S Z. Analysis of the influencing factors of the initial velocity of gas gun projectile [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2018, 38(1): 105–108, 113. doi: 10.15892/j.cnki.djzdxb.2018.01.025
    [16] 王涛, 陈国定, 巨江涛. GH4169高温合金高应变率本构关系试验研究 [J]. 航空学报, 2013, 34(4): 946–953. doi: 10.7527/S1000-6893.2013.0155

    WANG T, CHEN G D, JU J T. Experimental study of constitutive relationship of superalloy GH4169 under high strain rates [J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 946–953. doi: 10.7527/S1000-6893.2013.0155
    [17] ERICE B, GÁLVEZ F. A coupled elastoplastic-damage constitutive model with Lode angle dependent failure criterion [J]. International Journal of Solids and Structures, 2014, 51(1): 93–110. doi: 10.1016/j.ijsolstr.2013.09.015
    [18] WANG Y, SHAO W Z, ZHEN L, et al. Tensile deformation behavior of superalloy 718 at elevated temperatures [J]. Journal of Alloys and Compounds, 2009, 471(1/2): 331–335. doi: 10.1016/j.jallcom.2008.03.082
    [19] 李胡燕. GH4169镍基高温合金的组织和性能研究 [D]. 上海: 东华大学, 2014.

    LI H Y. Study of microstructures and properties of GH4169 superalloy [D]. Shanghai: Donghua University, 2014.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  19
  • PDF下载量:  35
出版历程
  • 收稿日期:  2021-11-12
  • 修回日期:  2021-12-18
  • 录用日期:  2022-03-08
  • 网络出版日期:  2022-07-27
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回