比较93钨合金材料的3种本构模型

陈青山 苗应刚 郭亚洲 李玉龙

陈青山, 苗应刚, 郭亚洲, 李玉龙. 比较93钨合金材料的3种本构模型[J]. 高压物理学报, 2017, 31(6): 753-760. doi: 10.11858/gywlxb.2017.06.010
引用本文: 陈青山, 苗应刚, 郭亚洲, 李玉龙. 比较93钨合金材料的3种本构模型[J]. 高压物理学报, 2017, 31(6): 753-760. doi: 10.11858/gywlxb.2017.06.010
CHEN Qing-Shan, MIAO Ying-Gang, GUO Ya-Zhou, LI Yu-Long. Comparative Analysis of 3 Constitutive Models for 93 Tungsten Alloy[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 753-760. doi: 10.11858/gywlxb.2017.06.010
Citation: CHEN Qing-Shan, MIAO Ying-Gang, GUO Ya-Zhou, LI Yu-Long. Comparative Analysis of 3 Constitutive Models for 93 Tungsten Alloy[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 753-760. doi: 10.11858/gywlxb.2017.06.010

比较93钨合金材料的3种本构模型

doi: 10.11858/gywlxb.2017.06.010
详细信息
    作者简介:

    陈青山(1992—), 男, 硕士, 主要从事材料力学性能研究及结构强度分析.E-mail:1274438517@qq.com

  • 中图分类号: O344.4; TG146.411

Comparative Analysis of 3 Constitutive Models for 93 Tungsten Alloy

  • 摘要: 在温度范围296~1 273 K、应变率范围0.000 5~6 000 s-1内, 对93钨合金材料(93%W-4.9%Ni-2.1%Fe)的力学行为进行了系统研究。实验结果表明:钨合金的塑性流动应力对温度和应变率非常敏感,它随温度的降低和应变率的增加而提高;真实塑性应变达到0.6时未出现剪切破坏。针对实验得到的应力-应变关系,分别进行了两种唯象本构模型(JC本构模型和KHL本构模型)和一种基于物理概念的本构模型(PB本构模型)的流动应力拟合。通过误差分析和应变率阶跃实验,对这3种本构模型的预测效果的精度进行了分析和评价。

     

  • 图  钨合金在不同应变率不同温度下的流动应力-塑性应变曲线

    Figure  1.  Flow stress-plastic strain curves of tungsten at different temperatures and strain rates

    图  实验数据与JC模型拟合数据的对比(实心点代表实验数据,实线代表JC模型拟合数据)

    Figure  2.  Experimental data vs. fitted JC model description (The symbols represent the former while the solid lines represent the latter, with the same color for each temperature.)

    图  实验数据与KHL模型拟合数据的对比(实心点代表实验数据,实线代表KHL模型拟合数据)

    Figure  3.  Experimental data vs. fitted KHL model description (The symbols represent the former while the solid lines represent the latter, with the same color for each temperature.)

    图  实验数据与PB模型拟合数据的对比(实心点代表实验数据,实线代表PB模型拟合数据)

    Figure  4.  Experimental data vs. fitted PB model description (The symbols represent the former while the solid lines represent the latter, with the same color for each temperature.)

    图  不同本构模型对实验数据的预测效果比较

    Figure  5.  Comparison of different constructive models in description of experimental data

    图  不同本构模型对应变率跳跃试验的预测结果

    Figure  6.  Predictive results of different constructive models for the strain-rate jump test

    图  不同本构模型对应变率跳跃试验的预测效果对比

    Figure  7.  Comparison of different constructive models in description of the strain-rate jump test

    表  1  JC模型参数

    Table  1.   Determined values of JC model parameters

    A/(MPa) B/(MPa) n C m
    600.8 1 200 0.494 4 0.059 0 0.820 3
    下载: 导出CSV

    表  2  KHL模型参数

    Table  2.   Determined values of KHL model parameters

    A/(MPa) B/(MPa) n1 n0 C m
    264.5 523.4 2.296 0.299 6 0.113 4 1.063
    下载: 导出CSV

    表  3  PB模型参数值

    Table  3.   Determined values of PB model parameters

    a/(MPa) n σ0/(MPa) (k/G0)/(K-1) ${{{\dot \varepsilon }_0}}$/(s-1) p q
    1 054.4 0.263 5 3 061.4 3.89×10-5 2×1010 0.5 1.5
    下载: 导出CSV
  • [1] 范景莲, 刘涛, 成会朝, 等.钨合金在高速加载条件下的动态力学性能和失效机理[J].稀有金属材料与工程, 2006, 35(6):841-844. doi: 10.3321/j.issn:1002-185X.2006.06.001

    FAN J L, LIU T, CHENG H C, et al.Dynamic properties and failure mechanism of tungsten heavy alloy under high-speed loading[J].Rare Metal Materials and Engineering, 2006, 35(6):841-844. doi: 10.3321/j.issn:1002-185X.2006.06.001
    [2] 魏志刚, 胡时胜, 李永池, 等.微细观结构对预扭转钨合金材料绝热剪切的影响[J].弹道学报, 1999, 11(1):15-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900042055

    WEI Z G, HU S S, LI Y C, et al.Structural influence on the adiabatic shearing failure of pre-torqued tungsten heavy alloy[J].Journal of Ballistics, 1999, 11(1):15-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900042055
    [3] KIM D S, NEMAT-NASSER S, ISAACS J B, et al.Adiabatic shear band in WHA in high-strain-rate compression[J].Mech Mater, 1998, 28(1):227-236. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=78c0a5aa25b27f88859bed95e1323e56
    [4] YADAV S, RAMESH K T.The mechanical properties of tungsten-based composites at very high strain rates[J].Mater Sci Eng A, 1995, 203(1/2):140-153. http://www.sciencedirect.com/science/article/pii/0921509395098658
    [5] COATES R S, RAMESH K T.The rate-dependent deformation of a tungsten heavy alloy[J].Mater Sci Eng A, 1991, 145(2):159-166. doi: 10.1016/0921-5093(91)90245-I
    [6] LEE W S, CHIOU S T.The influence of loading rate on shear deformation behaviour of tungsten composite[J].Compos Part B Eng, 1996, 27(2):193-200. doi: 10.1016/1359-8368(95)00051-8
    [7] LEE W S, XIEA G L, LIN C F.The strain rate and temperature dependence of the dynamic impact response of tungsten composite[J].Mater Sci Eng A, 1998, 257(2):256-267. doi: 10.1016/S0921-5093(98)00852-1
    [8] JOHNSON G R, COOK W H.A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics.AIP, 1983.
    [9] KHAN A S, LIANG R.Behaviors of three BCC metal over a wide range of strain rates and temperatures:experiments and modeling[J].Int J Plasticity, 1999, 15(10):1089-1109. doi: 10.1016/S0749-6419(99)00030-3
    [10] KHAN A S, SUH Y S, KAZMI R.Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys[J].Int J Plasticity, 2004, 20(12):2233-2248. doi: 10.1016/j.ijplas.2003.06.005
    [11] NEMAT-NASSER S, GUO W.Flow stress of commercially pure niobium over a broad range of temperatures and strain rates[J].Mater Sci Eng A, 2000, 284(1):202-210. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1f51f05b708b795911767017d4b0e6e9
    [12] NEMAT-NASSER S, GUO W G.Thermomechanical response of DH-36 structural steel over a wide range of strain rates and temperatures[J].Mech Mater, 2003, 35(11):1023-1047. doi: 10.1016/S0167-6636(02)00323-X
    [13] 李玉龙, 索涛, 郭伟国, 等.确定材料在高温高应变率下动态性能的Hopkinson杆系统[J].爆炸与冲击, 2005, 25(6):487-492. doi: 10.3321/j.issn:1001-1455.2005.06.002

    LI Y L, SUO T, GUO W G, et al.Determination of dynamic behavior of materials at elevated temperatures and high strain rates using Hopkinson bar[J].Explosion and Shock Waves, 2005, 25(6):487-492. doi: 10.3321/j.issn:1001-1455.2005.06.002
    [14] LI Y, GUO Y, HU H, et al.A critical assessment of high-temperature dynamic mechanical testing of metals[J].Int J Impact Eng, 2009, 36(2):177-184. doi: 10.1016/j.ijimpeng.2008.05.004
    [15] KAPOOR R, NEMAT-NASSER S.Determination of temperature rise during high strain rate deformation[J].Mech Mater, 1998, 27(1):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7c17e09746f2eec0386fd35b3d3e02c8
    [16] XU Z, HUANG F.Thermomechanical behavior and constitutive modeling of tungsten-based composite over wide temperature and strain rate ranges[J].Int J Plasticity, 2013, 40(1):163-184. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4a31669ec7b7a87b9c1b72c76c7f39a2
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  7999
  • HTML全文浏览量:  3723
  • PDF下载量:  912
出版历程
  • 收稿日期:  2017-01-16
  • 修回日期:  2017-03-19

目录

    /

    返回文章
    返回