超高压和酶抑制剂联合处理对荔枝果肉中过氧化物酶和果胶甲基酯酶的影响

黄丽 孙远明 陈柏暖 黄苇 谌国莲

引用本文:
Citation:

超高压和酶抑制剂联合处理对荔枝果肉中过氧化物酶和果胶甲基酯酶的影响

    通讯作者: 孙远明; 

Influence of Combined Treatment of Ultra High Pressure and Enzyme Inhibitors on Peroxidase and Pectin Methyl Esterase in Litchi Pulp

    Corresponding author: SUN Yuan-Ming
  • 摘要: 为了研究超高压与酶抑制剂联合处理对荔枝果肉中过氧化物酶(POD)和果胶甲基酯酶(PME)的影响,将荔枝(淮枝品种)果肉在两种酶抑制剂组合溶液(A:5 g/L柠檬酸+2.5 g/L L-抗坏血酸+5 g/L氯化钙;B:10 g/L柠檬酸+5 g/L L-抗坏血酸+10 g/L氯化钙)中分别浸泡10 min,并在100~400 MPa压力、10 ℃温度条件下处理30 min,采用分光光度法测定果肉中POD、PME的活性。结果表明:A、B两种组合处理能够明显钝化POD,但却显著激活了PME;超高压与A组合联合处理不能使POD、PME活性下降;超高压与B组合联合处理对POD、PME的影响与压力值有关系,100~300 MPa的超高压与B组合联合处理使POD活性下降,200~400 MPa的超高压与B组合联合处理则使PME活性升高。因此,超高压与酶抑制剂联合处理对荔枝果肉中POD的钝化存在一定的协同效应,且浓度越高,协同抑制效应越明显;而超高压与酶抑制剂联合处理对荔枝果肉中PME的钝化却表现出一定的拮抗性。
  • [1] Phunchaisri C, Apicharsrangkoon A. Effects of Ultra-High Pressure on Biochemical and Physical Modification of Lychee(Litchi chinensis Sonn) [J]. J Food Chemistry, 2005, 93: 57-64.
    [2] Krebbers B, Master A M, Koets M, et al. Quality and Storage-Stability of High-Pressure Preserved Green Beans [J]. J Food Eng, 2002, 54: 27-33.
    [3] Smelt J P P M. Recent Advances in the Microbiology of High Pressure Processing [J]. J Food Sci Tech, 1998, 9: 152-158.
    [4] Estrada-Giron Y, Swanson B G, Barbosa-Canovas G V. Advances in the Use of High Hydrostatic Pressure for Processing Cereal Grains and Legumes [J]. J Food Sci Tech, 2005, 16: 194-203.
    [5] Sancho F, Lambert Y, Demazeau G, et al. Effect of Ultra-High Hydrostatic Pressure on Hydrosoluble Vitamins [J]. J Food Eng, 1999, 39: 247-253.
    [6] Yuste J, Capellas M, Pla R, et al. High Pressure Processing for Food Safety and Preservation: A Review [J]. J Rapid Methods and Automation in Microbiology, 2001, 9(1): 1-10.
    [7] Sumitani H, Suekane S, Nakatani A, et al. Changes in Composition of Volatile Compounds in High Pressure Treated Peach [J]. J Agric Food Chem, 1994, 42: 785-790.
    [8] Kimura K, Ida M, Yosida Y, et al. Comparison of Keeping Quality between Pressure-Processed Jam and Heat-Processed Jam: Changes in Flavor Components, Hue and Nutrients during Storage [J]. J Biosci Biotech Biochem, 1994, 58(8): 1386-1391.
    [9] Rastogl N K, Niranjan K. Enhanced Mass Transfer during Osmotic Dehydration of High Pressure Treated Pineapple [J]. J Food Sci, 1998, 63(3): 508-511.
    [10] Yen G C, Lin H T. Changes in Volatile Flavor Components of Guava Juice with High-Pressure Treatment and Heat Processing and during Storage [J]. J Agric Food Chem, 1999, 47: 2082-2087.
    [11] Tangwongehai R, Ledward D A, Ames J M. Effect of High-Pressure Treatment on the Texture of Cherry Tomato [J]. J Agric Food Chem, 2000, 48: 1434-1441.
    [12] MacDonald L, Schaschke C J. Combined Effect of High Pressure, Temperature and Holding Time on Polyphenoloxidase and Peroxidase Activity in Banana(Musa acuminata) [J]. J Sci Food Agric, 2000, 80: 719-724.
    [13] Kim Y S, Park S J, Cho Y H, et al. Effects of Combined Treatment of High Hydrostatic Pressure and Mild Heat on the Quality of Carrot Juice [J]. J Food Eng Phys Proper, 2001, 66(9): 1355-1360.
    [14] Polydera A C, Stoforos N G, Taoukis P S. Comparative Shelf Life Study and Vitamin C Loss Kinetics in Pasteurised and High Pressure Processed Reconstituted Orange Juice [J]. J Food Eng, 2003, 60: 21-29.
    [15] Zeng Q M, Pan J, Xie H M, et al. Influence of Ultra-High-Pressure (UHP) on Micro-Organisms in Watermelon Juice [J]. Chinese Journal of High Pressure Physics, 2004, 18(1): 70-74. (in Chinese)
    [16] 曾庆梅, 潘见, 谢慧明, 等. 西瓜汁的超高压杀菌效果研究 [J]. 高压物理学报, 2004, 18(1): 70-74.
    [17] Huang L, Sun Y M, Pan K, et al. Influence of Ultra High Pressure on Peroxidase, Pectinmethylesterase and Soluble Protein in Litchi Fruit [J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 179-183. (in Chinese)
    [18] 黄丽, 孙远明, 潘科, 等. 超高压处理对荔枝果肉中可溶性蛋白和两种酶的影响 [J]. 高压物理学报, 2005, 19(2): 179-183.
    [19] Prestamo G, Arabas J, Broczek M F, et al. Reaction of B. cereus Bacteria and Peroxidase Enzyme under Pressure 400 MPa [J]. J Agric Food Chem, 2001, 49: 2830-2834.
    [20] Alonso J, Rodriguez T, Canet W. Purification and Characterization of Two Pectinmethylesterase from Persimmon(Diospyros kaki) [J]. J Sci Food Agric, 1997, 75: 352-358.
    [21] Pan K, Sun Y M, Huang L, et al. Effects of Some Factors on Peroxidase and Lipoxygenase Activity in Longan [J]. Food and Fermentation Industries, 2002, 28(6): 13-17. (in Chinese)
    [22] 潘 科, 孙远明, 黄丽, 等. 几种物质对龙眼果肉中过氧化物酶和脂肪氧合酶的影响 [J]. 食品与发酵业, 2002, 28(6): 13-17.
    [23] Cheng J J, Ren Y H, Yang Y L. Recent Progress in Inhibition of Enzymatic Browning of Fruit and Vegetable [J]. Journal of Northeast Agricultural University, 2000, 31(4): 406-410. (in Chinese)
    [24] 程建军, 任运宏, 扬咏丽, 等. 果蔬酶褐变控制的研究进展 [J]. 东北农业大学学报, 2000, 31(4): 406-410.
    [25] Prestamo G, Manzano P. Peroxidases of Selected Fruits and Fegetables and the Possible Use of Ascorbic Acid as an Antioxidant [J]. HortScience, 1993, 28: 48-50.
    [26] Alonso J, Rodriguez T, Canet W. Effect of Calcium Pretreatments on the Texture of Frozen Cherries. Role of Pectinesterase in the Changes in the Pectic Materials [J]. J Agric Food Chem, 1995, 43: 1011-1016.
    [27] Alonso J, Canet W, Rodriguez T. Thermal and Calcium Pretreatment Affects Texture, Pectinesterase and Pectic Substances of Frozen Sweet Cherries [J]. J Food Sci, 1997, 62: 511-515.
    [28] Weemaes C A, Ludikhuyze L R, Broeck I E, et al. Influence of pH, Benzoic Acid, Glutathione, EDTA, 4-Hexylresorcinol and Sodium Chloride on the Pressure Inactivation Kinetics of Mushroom Polyphenol Oxidase [J]. J Agric Food Chem, 1999, 47: 3526-3530.
    [29] Prestamo G, Arroyo G. Protective Effect of Ascorbic Acid against the Browning Developed in Apple Fruit with High Hydrostatic Pressure [J]. J Agric Food Chem, 1997, 45: 3541-3545.
    [30] Broeck I E, Ludikhuyze L R, Ven Loey A M, et al. Thermal and Combined Pressure-Temperature Inactivation of Orange Pectinesterase: Influence of pH and Additives [J]. J Agric Food Chem, 1999, 47: 2950-2958.
    [31] Broeck I E, Ludikhuyze L R, Ven Loey A M, et al. Inactivation of Orange Pectinesterase by Combined Pressure-Temperature: A Kinetic Study [J]. J Agric Food Chem, 2000, 48: 1960-1970.
  • [1] 黄丽孙远明潘科陈柏暖梁棣文谌国莲余红英 . 超高压处理对荔枝果肉中两种酶和可溶性蛋白的影响. 高压物理学报, 2005, 19(2): 179-183 . doi: 10.11858/gywlxb.2005.02.014
    [2] 周林燕廖小军曹霞敏刘凤霞毕秀芳易建勇李淑荣 . 高压二氧化碳对桃果胶甲基酯酶活性的钝化效果与动力学研究. 高压物理学报, 2014, 28(6): 753-761. doi: 10.11858/gywlxb.2014.06.017
    [3] 曾庆梅潘见谢慧明杨毅黄训端 . 超高压处理对多酚氧化酶活性的影响. 高压物理学报, 2004, 18(2): 144-148 . doi: 10.11858/gywlxb.2004.02.009
    [4] 谢慧明黄训端潘见曾庆梅王海翔蒋业雷 . 超高压对枯草杆菌胞外蛋白酶的影响. 高压物理学报, 2007, 21(1): 95-102 . doi: 10.11858/gywlxb.2007.01.016
    [5] 许文文曹霞敏刘凤霞廖小军 . 超高压处理的草莓果肉饮料在贮藏过程中的品质变化. 高压物理学报, 2013, 27(1): 137-146. doi: 10.11858/gywlxb.2013.01.020
    [6] 上官丽娟马永昆崔凤杰范晓波 . 高压处理对辣根过氧化物酶活性及构象的影响. 高压物理学报, 2011, 25(5): 475-480 . doi: 10.11858/gywlxb.2011.05.015
    [7] 李仁杰廖小军胡小松吴继红 . 超高压对蛋白质的影响. 高压物理学报, 2014, 28(4): 498-506. doi: 10.11858/gywlxb.2014.04.017
    [8] 曾庆梅潘见谢慧明杨毅徐惠群 . 西瓜汁的超高压杀菌效果研究. 高压物理学报, 2004, 18(1): 70-74 . doi: 10.11858/gywlxb.2004.01.012
    [9] 冯云春徐依吉赵付国 . 超高压淹没射流破岩规律实验研究. 高压物理学报, 2005, 19(1): 66-70 . doi: 10.11858/gywlxb.2005.01.012
    [10] 顾惠成李凤英王积方陈良辰 . 百吉帕超高压下Ag的X光衍射实验和研究. 高压物理学报, 1994, 8(1): 69-72 . doi: 10.11858/gywlxb.1994.01.012
    [11] 曹霞敏毕秀芳李仁杰董鹏胡小松廖小军 . 超高压和热杀菌对草莓浊汁及清汁品质的影响. 高压物理学报, 2014, 28(5): 631-640. doi: 10.11858/gywlxb.2014.05.019
    [12] 张静赵凤胡小松廖小军 . 食品微生物对超高压处理的逆境响应. 高压物理学报, 2012, 26(3): 343-350. doi: 10.11858/gywlxb.2012.03.016
    [13] 章中胡小松廖小军张燕 . 温压结合超高压处理对芽孢杀灭作用的研究进展. 高压物理学报, 2013, 27(1): 147-152. doi: 10.11858/gywlxb.2013.01.021
    [14] 易俊洁董鹏丁国微胡小松廖小军张燕 . 鲍鱼超高压脱壳工艺的优化及品质研究. 高压物理学报, 2014, 28(2): 239-246. doi: 10.11858/gywlxb.2014.02.017
    [15] 武艳梅陈芹芹甘芝霖王继恩倪元颖 . 超高压提取富含诺卡酮柚皮精油工艺的研究. 高压物理学报, 2013, 27(5): 785-792. doi: 10.11858/gywlxb.2013.05.021
    [16] 蒋兵刘凤霞孙恬胡小松廖小军 . 超高压和热杀菌对胡萝卜汁品质的影响. 高压物理学报, 2014, 28(1): 120-128. doi: 10.11858/gywlxb.2014.01.020
    [17] 韩奇钢班庆初易政陈梦露仲济伦杨文珂张强 . 超高压碳化钨顶砧新结构的设计与研究. 高压物理学报, 2014, 28(6): 686-690. doi: 10.11858/gywlxb.2014.06.007
    [18] 赵宏强吴金鑫张苑怡蓝蔚青刘书成孙晓红谢晶 . 超高压处理对冷藏鲈鱼片品质及组织结构变化的影响. 高压物理学报, 2017, 31(4): 494-504. doi: 10.11858/gywlxb.2017.04.019
    [19] 李汴生苏芳萍朱悦夫阮征李丹丹钱江高永焱 . 超高压处理对不同果蔬结构和性质的影响. 高压物理学报, 2018, 32(3): 035301-1-035301-11. doi: 10.11858/gywlxb.20170668
    [20] 夏远景刘志军李宁陈淑花邓记松刘学武李志义 . 超高压处理对海参自溶酶活性影响的研究. 高压物理学报, 2009, 23(5): 377-384 . doi: 10.11858/gywlxb.2009.05.009
  • 加载中
计量
  • 文章访问数:  1720
  • 阅读全文浏览量:  8
  • PDF下载量:  837
出版历程
  • 收稿日期:  2005-12-15
  • 录用日期:  2006-04-17
  • 刊出日期:  2007-03-05

超高压和酶抑制剂联合处理对荔枝果肉中过氧化物酶和果胶甲基酯酶的影响

    通讯作者: 孙远明; 
  • 1. 华南农业大学食品学院,广东广州 510642;
  • 2. 广东农工商职业技术学院,广东广州 510507;
  • 3. 华南理工大学工业装备与控制工程学院,广东广州 510641

摘要: 为了研究超高压与酶抑制剂联合处理对荔枝果肉中过氧化物酶(POD)和果胶甲基酯酶(PME)的影响,将荔枝(淮枝品种)果肉在两种酶抑制剂组合溶液(A:5 g/L柠檬酸+2.5 g/L L-抗坏血酸+5 g/L氯化钙;B:10 g/L柠檬酸+5 g/L L-抗坏血酸+10 g/L氯化钙)中分别浸泡10 min,并在100~400 MPa压力、10 ℃温度条件下处理30 min,采用分光光度法测定果肉中POD、PME的活性。结果表明:A、B两种组合处理能够明显钝化POD,但却显著激活了PME;超高压与A组合联合处理不能使POD、PME活性下降;超高压与B组合联合处理对POD、PME的影响与压力值有关系,100~300 MPa的超高压与B组合联合处理使POD活性下降,200~400 MPa的超高压与B组合联合处理则使PME活性升高。因此,超高压与酶抑制剂联合处理对荔枝果肉中POD的钝化存在一定的协同效应,且浓度越高,协同抑制效应越明显;而超高压与酶抑制剂联合处理对荔枝果肉中PME的钝化却表现出一定的拮抗性。

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回