爆炸作用下综合管廊燃气舱内同舱管道失效的影响因素

米红甫 彭冲 张小梅 汪阳 王莉莉 杨雪 蒋新生

米红甫, 彭冲, 张小梅, 汪阳, 王莉莉, 杨雪, 蒋新生. 爆炸作用下综合管廊燃气舱内同舱管道失效的影响因素[J]. 高压物理学报, 2022, 36(3): 035202. doi: 10.11858/gywlxb.20210891
引用本文: 米红甫, 彭冲, 张小梅, 汪阳, 王莉莉, 杨雪, 蒋新生. 爆炸作用下综合管廊燃气舱内同舱管道失效的影响因素[J]. 高压物理学报, 2022, 36(3): 035202. doi: 10.11858/gywlxb.20210891
MI Hongfu, PENG Chong, ZHANG Xiaomei, WANG Yang, WANG Lili, YANG Xue, JIANG Xinsheng. Influence Factors of the Failure of Adjacent Pipeline under Explosion in Gas Compartment of Utility Tunnel[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 035202. doi: 10.11858/gywlxb.20210891
Citation: MI Hongfu, PENG Chong, ZHANG Xiaomei, WANG Yang, WANG Lili, YANG Xue, JIANG Xinsheng. Influence Factors of the Failure of Adjacent Pipeline under Explosion in Gas Compartment of Utility Tunnel[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 035202. doi: 10.11858/gywlxb.20210891

爆炸作用下综合管廊燃气舱内同舱管道失效的影响因素

doi: 10.11858/gywlxb.20210891
基金项目: 国家自然科学基金(51704054);重庆市自然科学基金(cstc2019jcyj-msxmX0462);重庆市教委科技研究计划(KJQN201801531);重庆科技学院硕士研究生创新计划(YKJCX2020712);陆军勤务学院油料系火灾与爆炸安全防护实验室开放基金(LQ21KFJJ08)
详细信息
    作者简介:

    米红甫(1986-),男,博士,副教授,主要从事地下空间火灾及油气爆炸安全防护研究.E-mail:mimihh5@163.com

    通讯作者:

    彭 冲(1993-),男,硕士,主要从事地下空间火灾及油气爆炸安全防护研究.E-mail:1904202042@qq.com

  • 中图分类号: O389; X932

Influence Factors of the Failure of Adjacent Pipeline under Explosion in Gas Compartment of Utility Tunnel

  • 摘要: 为研究综合管廊燃气舱内天然气爆炸时预混气体长度、管道间距、管道壁厚和管道屈服强度4种因素对同舱管道失效的影响规律和影响程度,采用非线性有限元软件ANSYS/LS-DYNA,根据实际案例建立燃气舱三维模型,基于应变的失效判定标准,获取同舱管道的椭圆度变化情况。结果表明:天然气爆炸作用下,同舱管道的椭圆度与预混气体长度正相关,与管道壁厚和管道屈服强度负相关;同舱管道椭圆度与管道间距先负相关后正相关,该燃气舱内最优管道安全间距为0.74 m;管道屈服强度对同舱管道椭圆度的影响程度最小;当影响因素的变化率在1%~12%、13%~18%和19%~25% 3个区间时,对同舱管道椭圆度影响最大的因素分别为预混气体长度、管道壁厚和管道间距。研究结论可为综合管廊燃气舱的设计提供参考。

     

  • 图  燃气舱截面图(单位:mm)

    Figure  1.  Section view of the gas compartment (Unit: mm)

    图  有限元模型

    Figure  2.  Finite element model

    图  监测点

    Figure  3.  Monitoring points

    图  实验模型(单位:mm)

    Figure  4.  Experimental model (Unit: mm)

    图  计算结果与实验结果的对比

    Figure  5.  Comparison of calculated and experimental results

    图  等效应力云图

    Figure  6.  Von Mises stress nephograms

    图  管道截面1的变形情况

    Figure  7.  Pipeline deformation of section 1

    图  预混气体长度对管道椭圆度的影响

    Figure  8.  Effect of premixed gas length on pipeline’s ovality

    图  管道间距对管道椭圆度的影响

    Figure  9.  Effect of pipeline spacing on pipeline’s ovality

    图  10  管道壁厚和管道屈服强度对管道椭圆度的影响

    Figure  10.  Effects of pipeline thickness and pipeline yield strength on pipeline’s ovality

    图  11  敏感性分析

    Figure  11.  Sensitivity analysis

    表  1  工况设置[2, 15]

    Table  1.   Working condition setting[2, 15]

    GroupWorking conditionPremixed gas sizea/mh/mmσs/MPa
    Length/mWidth/mHeight/m
    a3.02.03.20.54.8245
    2.82.03.20.54.8245
    2.62.03.20.54.8245
    2.42.03.20.54.8245
    2.22.03.20.54.8245
    2.02.03.20.54.8245
    b3.02.03.20.54.8245
    3.02.03.20.64.8245
    3.02.03.20.74.8245
    3.02.03.20.84.8245
    3.02.03.20.94.8245
    3.02.03.21.04.8245
    c3.02.03.20.54.8245
    3.02.03.20.56.0245
    3.02.03.20.57.0245
    3.02.03.20.58.0245
    3.02.03.20.59.0245
    3.02.03.20.510.0 245
    d3.02.03.20.54.8245
    3.02.03.20.54.8290
    3.02.03.20.54.8320
    3.02.03.20.54.8360
    3.02.03.20.54.8390
    下载: 导出CSV

    表  2  甲烷-空气预混气体的材料参数

    Table  2.   Material parameters of the methane-air premixed gas

    Density/
    (kg·m−3
    Ratio of
    specific heat
    Detonation velocity/
    (km·s−1
    Explosion pressure/MPaInstantaneous explosion pressure/MPaInitial internal energy/(MJ·m−3
    1.2341.2741.8551.870.9353.408
    下载: 导出CSV

    表  3  天然气管道材料参数

    Table  3.   Material parameters of natural gas pipeline

    Density/(g·cm−3)Elastic modulus/GPaPoisson’s ratioCP
    7.852060.340.45
    下载: 导出CSV
  • [1] LUO Y, ALAGHBANDRAD A, GENGER T K, et al. History and recent development of multi-purpose utility tunnels [J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2020, 103: 103511. doi: 10.1016/j.tust.2020.103511
    [2] 中国建筑标准设计研究院. 综合管廊燃气管道敷设与安装 [M]. 北京: 中国计划出版社, 2018: 23–30.

    China Institute of Building Standard Design and Research Co., Ltd. Laying and installation of gas pipeline in utility tunnel [M]. Beijing: China Planning Press, 2018: 23–30.
    [3] 龚燚. 燃气管线入综合管廊的抗爆防护技术研究 [D]. 南京: 南京理工大学, 2018.

    GONG Y. Study on anti-explosion protection technology of gas pipeline entering the utility tunnel [D]. Nanjing: Nanjing University of Science and Technology, 2018.
    [4] 詹武刚. 某城市综合管廊通风系统及燃气舱设计 [J]. 建筑热能通风空调, 2017, 36(4): 99–103. doi: 10.3969/j.issn.1003-0344.2017.04.026

    ZHAN W G. Ventilation system and natural gas tank design of urban utility tunnel [J]. Building Energy & Environment, 2017, 36(4): 99–103. doi: 10.3969/j.issn.1003-0344.2017.04.026
    [5] 刘希亮, 李烨, 王新宇, 等. 地下管廊在燃气爆炸作用下的动力响应分析 [J]. 高压物理学报, 2018, 32(6): 064104. doi: 10.11858/gywlxb.20180544

    LIU X L, LI Y, WANG X Y, et al. Dynamic response analysis of underground pipe gallery under gas explosion [J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 064104. doi: 10.11858/gywlxb.20180544
    [6] 刘希亮, 李烨, 王新宇, 等. 管廊内燃气爆炸作用下不同抗爆结构性能研究 [J]. 高压物理学报, 2019, 33(4): 045204. doi: 10.11858/gywlxb.20180640

    LIU X L, LI Y, WANG X Y, et al. Anti-explosion performance of different anti-explosion structures under gas explosion in pipe gallery [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045204. doi: 10.11858/gywlxb.20180640
    [7] 黄有波. 天然气管道燃烧爆炸危害评价研究 [D]. 北京: 首都经济贸易大学, 2016.

    HUANG Y B. Study on hazard assessment of combustion and explosion in natural gas pipeline [D]. Beijing: Capital University of Economics and Business, 2016.
    [8] GUO Y B, LIU C C, WANG D G, et al. Numerical study and safety spacing of buried parallel gas pipelines: a study based on TNT equivalent method [J]. International Journal of Pressure Vessels and Piping, 2018, 168: 246–257. doi: 10.1016/j.ijpvp.2018.11.002
    [9] GUO Y B, HE L G, WANG D G, et al. Numerical investigation of surface conduit parallel gas pipeline explosive based on the TNT equivalent weight method [J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 360–368. doi: 10.1016/j.jlp.2016.10.006
    [10] MA H Y, ZHONG M S, LI X H, et al. Experimental and numerical simulation study on the shock and vibration effect of OD1422-X80 mainline natural gas pipeline explosion [J]. Shock and Vibration, 2019: 6824819. doi: 10.1155/2019/6824819
    [11] MA H Y, LONG Y, LI X H, et al. Attenuation and time-frequency characteristics of explosion ground vibration of shallow buried OD1422-X80 mm-12 MPa pipeline based on prototype experiment [J]. Journal of Performance of Constructed Facilities, 2020, 34(1): 04019092. doi: 10.1061/(ASCE)CF.1943-5509.0001349
    [12] LI Z X, WU J S, LIU M Y, et al. Numerical analysis of the characteristics of gas explosion process in natural gas compartment of utility tunnel using FLACS [J]. Sustainability, 2019, 12(1): 153. doi: 10.3390/su12010153
    [13] ZHANG S H, MA H T, HUANG X M, et al. Numerical simulation on methane-hydrogen explosion in gas compartment in utility tunnel [J]. Process Safety and Environmental Protection, 2020, 140: 100–110. doi: 10.1016/j.psep.2020.04.025
    [14] 张书豪, 彭世尼, 杜建梅, 等. 国内综合管廊燃气舱安全研究综述 [J]. 煤气与热力, 2019, 39(11): B01–B09. doi: 10.13608/j.cnki.1000-4416.2019.11.015

    ZHANG S H, PENG S N, DU J M, et al. Summary of research on safety of gas compartment in domestic utility tunnel [J]. Gas and Heat, 2019, 39(11): B01–B09. doi: 10.13608/j.cnki.1000-4416.2019.11.015
    [15] 中国石油集团工程设计有限责任公司西南分公司. 输气管道工程设计规范: GB 50251—2015 [S]. 北京: 中国计划出版社, 2015.

    Southwest Branch of CNPC Engineering Design Co., Ltd. Code for design of gas transmission pipeline engineering: GB 50251—2015 [S]. Beijing: China Planning Publishing House, 2015.
    [16] 辛春亮, 薛在清, 涂建, 等. 有限元分析常用材料参数手册 [M]. 北京: 机械工业出版社, 2020: 2–18.

    XIN C L, XUE Z Q, TU J, et al. Handbook of common material parameters for finite element analysis [M]. Beijing: China Machine Press, 2020: 2–18.
    [17] 赵威. 管道中可燃气体爆炸动力学特征研究 [D]. 青岛: 青岛科技大学, 2018.

    ZHAO W. Study on explosive dynamics characterristics of flammable gas in pipeline [D]. Qingdao: Qingdao University of Science & Technology, 2018.
    [18] 刘洋, 李展, 方秦, 等. 惰性气体和水蒸气对长直空间燃气爆炸超压及其振荡的抑制作用 [J]. 高压物理学报, 2021, 35(5): 055201. doi: 10.11858/gywlxb.20200654

    LIU Y, LI Z, FANG Q, et al. Inert gas and water vapor suppressing overpressure and its oscillation of gas explosion in long straight space [J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055201. doi: 10.11858/gywlxb.20200654
    [19] 文霞. 隧道内输气管道泄漏爆炸数值模拟及对邻管的损伤研究 [D]. 成都: 西南石油大学, 2018.

    WEN X. Numerical simulation of leakage and explosion of gas pipeline and damage to adjacent pipeline in tunnel [D]. Chengdu: Southwest Petroleum University, 2018.
    [20] 陈国华, 徐佳, 周志航, 等. 埋地输气管道泄漏爆炸作用下并行邻管的动力响应 [J]. 油气储运, 2020, 39(11): 1228–1237.

    CHEN G H, XU J, ZHOU Z H, et al. Dynamic response of adjacent parallel pipes to leakage and explosion of buried gas pipelines [J]. Oil & Gas Storage and Transportation, 2020, 39(11): 1228–1237.
    [21] 韩文海, 周晶. 腐蚀海底管道可靠性分析 [J]. 石油学报, 2015, 36(4): 516–520. doi: 10.7623/syxb201504014

    HAN W H, ZHOU J. Reliability analysis of corroded subsea pipeline [J]. Acta Petrolei Sinica, 2015, 36(4): 516–520. doi: 10.7623/syxb201504014
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  994
  • HTML全文浏览量:  330
  • PDF下载量:  36
出版历程
  • 收稿日期:  2021-10-12
  • 修回日期:  2021-10-29
  • 刊出日期:  2022-05-30

目录

    /

    返回文章
    返回