多种复合炸药装药的慢烤特性及其机理

肖游 智小琦 王琦 范兴华

肖游, 智小琦, 王琦, 范兴华. 多种复合炸药装药的慢烤特性及其机理[J]. 高压物理学报, 2022, 36(2): 025201. doi: 10.11858/gywlxb.20210871
引用本文: 肖游, 智小琦, 王琦, 范兴华. 多种复合炸药装药的慢烤特性及其机理[J]. 高压物理学报, 2022, 36(2): 025201. doi: 10.11858/gywlxb.20210871
XIAO You, ZHI Xiaoqi, WANG Qi, FAN Xinghua. Characteristics and Mechanism of Slow Cook-off of Composite Explosive Charges[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025201. doi: 10.11858/gywlxb.20210871
Citation: XIAO You, ZHI Xiaoqi, WANG Qi, FAN Xinghua. Characteristics and Mechanism of Slow Cook-off of Composite Explosive Charges[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025201. doi: 10.11858/gywlxb.20210871

多种复合炸药装药的慢烤特性及其机理

doi: 10.11858/gywlxb.20210871
详细信息
    作者简介:

    肖 游(1996-),男,硕士研究生,主要从事战斗部毁伤技术研究. E-mail:1466407414@qq.com

    通讯作者:

    智小琦(1965-),女,博士,教授,主要从事战斗部毁伤技术及弹药易损性研究. E-mail:zxq4060@sina.com

  • 中图分类号: O389; TJ55

Characteristics and Mechanism of Slow Cook-off of Composite Explosive Charges

  • 摘要: 为研究不同结构复合装药在慢速烤燃过程中的响应规律,分别设计了JH-2和JHB炸药的$\varnothing $19 mm单独药柱装药和$\varnothing $30 mm复合药柱装药烤燃弹,通过慢速烤燃试验分别获得了单独药柱烤燃弹在1和2 ℃·min−1升温速率、复合药柱烤燃弹在1 ℃·min−1升温速率下的温度-时间变化曲线,并结合数值模拟进一步分析了烤燃弹内部温度场的变化。研究结果表明:单独药柱装药情况下,低敏感炸药能明显降低弹药在热刺激下的响应等级;而在复合药柱装药时,烤燃弹响应点均位于外层低敏感药柱靠近壳体的环状区域,响应温度随高能药柱直径的增加而升高,响应等级随外层低敏感药柱厚度的增加而增加,复合装药由于药柱接触面存在接触热阻,烤燃弹传热受到阻滞,使得内部高能药柱极少参与反应。

     

  • 图  慢速烤燃试验布局

    Figure  1.  Layout of slow cook-off test

    图  单一药柱烤燃弹慢烤响应残骸

    Figure  2.  Debris of single charge bombs after slow cook-off

    图  复合装药烤燃弹模型

    Figure  3.  Model of the composite charge bomb

    图  复合装药仿真响应时刻(10 950 s)烤燃弹温度分布

    Figure  4.  Temperature distribution of bombs at simulated response time (10 950 s) for composite charges

    图  3个监测点测得的5种结构复合装药烤燃弹的温度-时间曲线

    Figure  5.  Temperature-time curves of the monitoring points for five kinds of composite charge bombs

    图  5种结构响应点的温度-时间曲线

    Figure  6.  Temperature-time curves of the ignition point for five kinds of composite charges

    图  响应时刻各组分分解质量分数随结构的变化趋势

    Figure  7.  Variation trend of decomposed mass fraction with structures for each component at response time

    图  响应时刻各组分分解质量随结构的变化趋势

    Figure  8.  Variation trend of decomposed mass with structures for each component at response time

    图  复合装药烤燃弹

    Figure  9.  Composite charge bombs

    图  10  5组复合药柱烤燃试验结果

    Figure  10.  Results of cook-off test for five groups of composite charges

    图  11  5组慢速烤燃试验响应时刻的温度-时间曲线

    Figure  11.  Temperature-time curves of response time for five groups of slow cook-off tests

    图  12  试验与数值模拟温度拟合

    Figure  12.  Fitting of test and simulation temperatures

    表  1  单一药柱慢速烤燃试验结果

    Table  1.   Slow cook-off test results of single charges

    ExplosiveHeating rate/(℃·min−1)No.Temperature/℃Response time/min
    JH-211209.5183.10
    2208.9182.70
    23213.7 95.85
    4214.1 96.04
    JHB15208.4182.20
    6209.6183.30
    27214.3 95.63
    8213.9 94.90
    下载: 导出CSV

    表  2  炸药与壳体的物性参数

    Table  2.   Physical parameters of explosives and shell

    Material$\;\rho $/(g∙cm−3)c/(J∙kg−1∙K−1)$\lambda $/(W∙m−1∙K−1)
    RDX1 6401 130.000.250
    TATB1 9381 170.000.544
    Steel8 030 502.4843.000
    下载: 导出CSV

    表  3  炸药反应动力参数

    Table  3.   Reaction dynamic parameters of explosives

    ExplosiveiE/(kJ∙mol−1)Z/s−1Q/(MJ∙kg−1)
    RDX11946.40×1017–2.68
    21854.74×10178.03
    31439.54×101465.60
    TATB42527.02×10200.21
    51768.75×10120.21
    61424.36×1011–2.94
    下载: 导出CSV

    表  4  单一药柱仿真结果与试验结果的比较

    Table  4.   Comparison between simulation and test results for single charges

    ExplosiveHeating rate
    /(℃·min−1)
    Response temperature/℃ Response time/min
    CalculateTestCalculateTest
    JH-21206.60209.2 179.75182.9
    2214.68213.9 93.92 96.0
    JHB1207.68209.0 180.83182.8
    2214.18214.1 93.67 95.2
    下载: 导出CSV

    表  5  复合药柱试验分组与组分药柱厚度

    Table  5.   Test group and charge thickness of composite charges

    Charge speciesThickness/mm
    G1G2G3G4G5
    JH-21415161719
    JHB1615141311
    下载: 导出CSV
  • [1] REYNOLDS M, HUNTINGTON-THRESHER W. Development of tuneable effects warheads [J]. Defence Technology, 2016, 12(3): 255–262. doi: 10.1016/j.dt.2016.01.006
    [2] ARNOLD W. Tunable charge with internal layers [J]. Procedia Engineering, 2015, 103: 4–11. doi: 10.1016/j.proeng.2015.04.002
    [3] HONG X W, LI W B, CHENG W, et al. Numerical simulation of the blast wave of a multilayer composite charge [J]. Defence Technology, 2020, 16(1): 96–106. doi: 10.1016/j.dt.2019.04.007
    [4] 向梅, 黄毅民, 饶国宁, 等. 不同升温速率下复合药柱烤燃实验与数值模拟研究 [J]. 爆炸与冲击, 2013, 33(4): 394–400. doi: 10.3969/j.issn.1001-1455.2013.04.010

    XIANG M, HUANG Y M, RAO G N, et al. Cook-off test and numerical simulation for composite charge at different heating rates [J]. Explosion and Shock Waves, 2013, 33(4): 394–400. doi: 10.3969/j.issn.1001-1455.2013.04.010
    [5] 任玉新, 陈海昕. 计算流体力学基础 [M]. 北京: 清华大学出版社, 2006.

    REN Y X, CHEN H X. Fundamentals of computational fluid dynamics [M]. Beijing: Tsinghua University Press, 2006.
    [6] MCGUIRE R R, TARVER C M. Chemical-decomposition models for the thermal explosion of confined HMX, TATB, RDX, and TNT explosives [C]//Seventh Symposium on Detonation. Annapolis, Maryland, US: Office of Naval Research, 1981.
    [7] ABD-ELGHANY M, ELBEIH A, HASSANEIN S. Thermal behavior and decomposition kinetics of RDX and RDX/HTPB composition using various techniques and methods [J]. Central European Journal of Energetic Materials, 2016, 13(3): 714–735. doi: 10.22211/cejem/64954
    [8] TARVER C M, KOERNER J G. Effects of endothermic binders on times to explosion of HMX- and TATB-based plastic bonded explosives [J]. Journal of Energetic Materials, 2007, 26(1): 1–28. doi: 10.1080/07370650701719170
    [9] WEN Q, WANG Y S, WANG G Y, et al. Numerical analysis of response of a fuze to cook-off [J]. Journal of Energetic Materials, 2019, 37(3): 340–355. doi: 10.1080/07370652.2019.1615580
    [10] 徐瑞, 智小琦, 王帅. 缓释结构对B炸药烤燃响应烈度的影响 [J]. 高压物理学报, 2021, 35(3): 035201. doi: 10.11858/gywlxb.20200657

    XU R, ZHI X Q, WANG S. Influence of venting structure on the cook-off response intensity of composition B [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 035201. doi: 10.11858/gywlxb.20200657
    [11] HU M, YU D M, WEI J B. Thermal conductivity determination of small polymer samples by differential scanning calorimetry [J]. Polymer Testing, 2007, 26(3): 333–337. doi: 10.1016/j.polymertesting.2006.11.003
    [12] 丁洋, 赵生伟, 初哲, 等. 激光辐照带壳炸药热点火数值计算模型 [J]. 现代应用物理, 2017, 8(3): 031001.

    DING Y, ZHAO S W, CHU Z, et al. Modeling of thermal ignition of explosive with metal shell irradiated by laser beam [J]. Modern Applied Physics, 2017, 8(3): 031001.
    [13] WETHTHIMUNI M L, CAPSONI D, MALAGODI M, et al. Shellac/nanoparticles dispersions as protective materials for wood [J]. Applied Physics A, 2016, 122(12): 1058. doi: 10.1007/s00339-016-0577-7
    [14] GU J, LI H, ZHAO X, et al. Kinetic modeling of liquid phase RDX thermal decomposition process and its application in the slow cook-off test prediction [J]. Propellants, Explosives, Pyrotechnics, 2021, 46(6): 935–943. doi: 10.1002/prep.202000291
    [15] GNANAPRAKASH K, CHAKRAVARTHY S R, JAYARAMAN K, et al. Combustion behaviour of composite sandwich propellants containing RDX [J]. Proceedings of the Combustion Institute, 2021, 38(3): 4451–4459. doi: 10.1016/j.proci.2020.06.387
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  1230
  • HTML全文浏览量:  794
  • PDF下载量:  54
出版历程
  • 收稿日期:  2021-08-25
  • 修回日期:  2021-09-01

目录

    /

    返回文章
    返回