抗爆型聚脲涂层的性能及其抗爆机理

方志强 吕平 张锐 黄微波 孙鹏飞 桑英杰

方志强, 吕平, 张锐, 黄微波, 孙鹏飞, 桑英杰. 抗爆型聚脲涂层的性能及其抗爆机理[J]. 高压物理学报, 2022, 36(2): 024102. doi: 10.11858/gywlxb.20210840
引用本文: 方志强, 吕平, 张锐, 黄微波, 孙鹏飞, 桑英杰. 抗爆型聚脲涂层的性能及其抗爆机理[J]. 高压物理学报, 2022, 36(2): 024102. doi: 10.11858/gywlxb.20210840
FANG Zhiqiang, LYU Ping, ZHANG Rui, HUANG Weibo, SUN Pengfei, SANG Yingjie. Blast-Resistant Properties and Mechanism of Anti-Explosion Polyurea Coating[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024102. doi: 10.11858/gywlxb.20210840
Citation: FANG Zhiqiang, LYU Ping, ZHANG Rui, HUANG Weibo, SUN Pengfei, SANG Yingjie. Blast-Resistant Properties and Mechanism of Anti-Explosion Polyurea Coating[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024102. doi: 10.11858/gywlxb.20210840

抗爆型聚脲涂层的性能及其抗爆机理

doi: 10.11858/gywlxb.20210840
详细信息
    作者简介:

    方志强(1996-),男,硕士研究生,主要从事聚脲涂层防护研究. E-mail:fangzhiqiang1015@163.com

    通讯作者:

    吕 平(1964-),女,博士,教授,主要从事新型功能材料研究. E-mail:13964222593@163.com

  • 中图分类号: O383.2; TB34

Blast-Resistant Properties and Mechanism of Anti-Explosion Polyurea Coating

  • 摘要: 通过广角X射线衍射仪、差示扫描量热法实验、扫描电子显微镜以及聚脲喷涂钢筋混凝土板的接触爆炸实验,研究了Qtech T26抗爆型聚脲(T26聚脲)的力学强度、分子结构及热性能,分析了有无涂层钢筋混凝土板的宏观形貌及涂层的微观形貌,考察了T26聚脲喷涂钢筋混凝土板的抗爆能力和防护机理。结果表明:T26聚脲的拉伸强度达到25.4 MPa,断裂伸长率为451.9%;其分子链中软段与硬段之间排列有序,微晶区结晶度为24.11%;软段玻璃化转变温度为−44.9 ℃,硬段玻璃化转变温度为36.5 ℃,呈现出一定的微相分离形态。爆炸实验后,无涂层钢筋混凝土板的迎爆面出现较大凹坑,背爆面被震塌,混凝土破碎;而对于有涂层的钢筋混凝土板,其迎爆面出现较小凹坑,迎爆面涂层除了因瞬间高温而导致的聚脲软化外,爆炸反射波的稀疏拉伸作用使聚脲材料发生破坏,聚脲涂层被撕裂,而背爆面则由于聚脲涂层削弱了稀疏拉伸波的作用,从而保护混凝土材料不被破碎,避免爆炸碎片飞溅。

     

  • 图  哑铃形试样示意图

    Figure  1.  Schematic diagram of the dumbbell type sample

    图  差示扫描量热仪图像

    Figure  2.  Image of differential scanning calorimeter

    图  准静态下T26聚脲的应力-应变曲线及试件结构

    Figure  3.  Stress-strain curve of T26 polyurea under quasi-static loading and the specimen structure

    图  T26聚脲的WXRD谱及分峰处理结果

    Figure  4.  T26 polyurea WXRD pattern and peak processing curve

    图  T26聚脲玻璃化转变温度

    Figure  5.  Glass transition temperature of T26 polyurea

    图  T26聚脲在高温区的DSC曲线

    Figure  6.  DSC curve of T26 polyurea in high temperature range

    图  钢筋混凝土板结构示意图

    Figure  7.  Schematic of reinforced concrete plate structure

    图  爆炸实验装置示意图

    Figure  8.  Schematic of blast experiment device

    图  涂层的不同爆炸区域划分

    Figure  9.  Different explosion zones of coatings

    图  10  无涂层钢筋混凝土板的破坏形貌

    Figure  10.  Failure morphology of uncoated reinforced concrete plate

    图  11  有涂层钢筋混凝土板的破坏形貌

    Figure  11.  Failure morphology of coated reinforced concrete slab

    图  12  爆炸后T26聚脲涂层的微观形貌

    Figure  12.  Micromorphology of T26 polyurea coating after explosion

    表  1  T26聚脲与其他聚脲材料的物理性能对比

    Table  1.   Physical properties comparison of T26 polyurea with other polyureas

    MaterialDensity/
    (g·cm−3)
    Elastic modulus/
    MPa
    Tensile strength/
    MPa
    Peel strength/
    (N·mm−1)
    Breaking elongation/
    %
    T260.97784.0525.475.5451.9
    T1[13]1.02019.2 391.7
    T2[17]1.02−1.0718.0350.0
      Note: (1) T1 is energy absorbing polyurea for strengthening masonry wall explosion test;
       (2) T2 is common polyurea for explosion test of reinforced autoclaved aerated concrete plate.
    下载: 导出CSV

    表  2  T26聚脲的WXRD分峰处理结果

    Table  2.   WXRD peak separation results of T26 polyurea

    SpecimenPeak position/(°) Peak areaCrystallinity/%
    Amorphous regionMicrocrystalline domainAmorphous regionMicrocrystalline domain
    T2620.5238.16 24042.857638.5724.11
    下载: 导出CSV

    表  3  宏观形貌分析方法

    Table  3.   Analysis method of macroscopic morphology

    Exp. conditionCoatingCoating thickness/mmFailure planeMacroscopic morphology comparison
    1None0Contact blast faceFailure mode and diameter
    Back burst faceFailure mode and diameter
    2T2610Contact blast faceFailure mode and diameter
    Back burst faceFailure mode and diameter
    下载: 导出CSV

    表  4  有无涂层板的破坏结果对比

    Table  4.   Comparison of failure results of coated plates with uncoated plates

    PlateDamage diameter Failure depth or bulge height
    Uncoating/cmCoating/cmError/%Uncoating/cmCoating/cmError/%
    Blast side41.024.540.24 60.00100
    Rear side11.2 9.416.07 5.00100
    Debris situationMore and wide
    dispersion range
    Less and more
    concentrated
    in pits
    Larger, larger
    splash range
    No debris
    下载: 导出CSV
  • [1] GUO H, GUO W G, AMIRKHIZI A V, et al. Experimental investigation and modeling of mechanical behaviors of polyurea over wide ranges of strain rates and temperatures [J]. Polymer Testing, 2016, 53: 234–244.
    [2] PATHAK J A, TWIGG J N, NUGENT K E. Structure evolution in a polyurea segmented block copolymer because of mechanical deformation [J]. Macromolecules, 2008, 41(20): 7543–7548. doi: 10.1021/ma8011009
    [3] QIAO J, WU G H. Rate-dependent tensile behavior of polyurea at low strain rates [J]. International Journal of Polymer Analysis and Characterization, 2011, 16(5): 290–297. doi: 10.1080/1023666X.2011.587944
    [4] SAMIEE A, AMIRKHIZI A V, NEMAT-NASSER S. Numerical study of the effect of polyurea on the performance of steel plates under blast loads [J]. Mechanics of Materials, 2013, 64: 1–10.
    [5] AMINI M R, ISAACS J, NEMAT-NASSER S. Investigation of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments [J]. Mechanics of Materials, 2010, 42(6): 628–639. doi: 10.1016/j.mechmat.2009.09.008
    [6] DAI L H, WU C, AN F J, et al. Experimental investigation of polyurea-coated steel plates at underwater explosive loading [J]. Advances in Materials Science & Engineering, 2018: 1–7.
    [7] DAVIDSON J S, PORTER J R, DINAN R J. Explosive testing of polymer retrofit masonry walls [J]. Journal of Performance of Constructed Facilities, 2004, 18(2): 100–106. doi: 10.1061/(ASCE)0887-3828(2004)18:2(100)
    [8] PARNIANI S, TOUTANJI H. Monotonic and fatigue performance of RC beams strengthened with a polyurea coating system [J]. Construction and Building Materials, 2015, 101: 22–29. doi: 10.1016/j.conbuildmat.2015.10.020
    [9] RAMAN S N, NGO T, MENDIS P, et al. Elastomeric polymers for retrofitting of reinforced concrete structures against the explosive effects of blast [J]. Advances in Materials Science & Engineering, 2012: 754142.
    [10] GHADERI M, MALEKI V A, ANDALIBI K. Retrofitting of unreinforced masonry walls under blast loading by FRP and spray on polyurea [J]. Cumhuriyet Science Journal, 2015, 36(4): 462–477.
    [11] IQBAL N, SHARMA P K, KUMAR D. Protective polyuria coating for enhanced blast survivability of concrete [J]. Construction and Building Materials, 2018(175): 682−690.
    [12] 王军国. 喷涂聚脲加固粘土砖砌体抗动载性能试验研究及数值分析[D]. 合肥: 中国科学技术大学, 2017.

    WANG J G. Experimental and numerical investigation of clay brick masonry walls strengthened with spary polyurea elastomer under blast loads [D]. Hefei: University of Science and Technology of China, 2017.
    [13] 尚伟, 黄正祥, 祖旭东. 接触爆炸下聚脲加固砌体墙的抗爆性能试验研究 [C]//中国力学大会论文集. 北京: 中国力学学会, 2019: 3843–3851.

    SHANG W, HUANG Z X, ZU X D. Experimental study on anti-explosion performance of masonry wall reinforced by polyurea under contact explosion [C]//Proceedings of the Chinese Mechanics Conference (CCTAM 2019). Beijing: The Chinese Society of Theoretical and Applied Mechanics, 2019: 3843–3851.
    [14] TAO X G, JIA Y F, FAN C F. Experimental research on explosion resistance of masonry structures reinforced with modified polyurea elastomer [J]. International Conference on Optoelectronic Science and Materials, 2020, 711(1): 012012.
    [15] 田力, 王若晨. 近爆冲击波和破片复合作用下混凝土空心砌块墙防护技术研究 [J]. 湖南大学学报(自然科学版), 2019, 46(11): 57–68.

    TIAN L, WANG R C. Study on protection technology of concrete hollow block wall subjected to combined effects of close blast shock waves and fragments [J]. Journal of Hunan University (Natural Sciences), 2019, 46(11): 57–68.
    [16] GU M, LING X D, WANG H X. Experimental and numerical study of polymer-retrofitted masonry walls under gas explosions [J]. Processes, 2019, 7(12): 863. doi: 10.3390/pr7120863
    [17] CHEN Y S, WANG B, ZHANG B, et al. Polyurea coating for foamed concrete panel: an efficient way to resist explosion [J]. Defence Technology, 2020, 16(1): 140–153.
    [18] OHKUBO K, BEPPU M, OHNO T, et al. Experimental study on the effectiveness of fiber sheet reinforcement on the explosive-resistant performance of concrete plates [J]. International Journal of Impact Engineering, 2008, 35(12): 1702–1708. doi: 10.1016/j.ijimpeng.2008.07.022
    [19] 汪维, 杨建超, 汪剑辉, 等. POZD涂层方形钢筋混凝土板抗接触爆炸试验研究 [J]. 爆炸与冲击, 2020, 40(12): 121402.

    WANG W, YANG J C, WANG J H, et al. Experimental research on anti-contact explosion of POZD coated square reinforced concrete slab [J]. Explosion and Shock Waves, 2020, 40(12): 121402.
    [20] 马建军, 程良奎, 蔡路军. 爆破应力波的传播及其远区破坏效应研究现状述评 [J]. 爆破, 2005(2): 17–21, 26. doi: 10.3963/j.issn.1001-487X.2005.02.005

    MA J J, CHENG L G, CAI L J. Present situation research on propagation of blasting stress wave and rock fragmentation effect in remote area [J]. Blasting, 2005(2): 17–21, 26. doi: 10.3963/j.issn.1001-487X.2005.02.005
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  649
  • HTML全文浏览量:  501
  • PDF下载量:  54
出版历程
  • 收稿日期:  2021-07-05
  • 修回日期:  2021-08-11

目录

    /

    返回文章
    返回