内部爆炸载荷作用下砌体墙结构的失效规律

曹宇航 张晓伟 张庆明

曹宇航, 张晓伟, 张庆明. 内部爆炸载荷作用下砌体墙结构的失效规律[J]. 高压物理学报, 2022, 36(2): 024203. doi: 10.11858/gywlxb.20210810
引用本文: 曹宇航, 张晓伟, 张庆明. 内部爆炸载荷作用下砌体墙结构的失效规律[J]. 高压物理学报, 2022, 36(2): 024203. doi: 10.11858/gywlxb.20210810
CAO Yuhang, ZHANG Xiaowei, ZHANG Qingming. Failure Characteristics of Masonry Wall under Internal Explosion[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024203. doi: 10.11858/gywlxb.20210810
Citation: CAO Yuhang, ZHANG Xiaowei, ZHANG Qingming. Failure Characteristics of Masonry Wall under Internal Explosion[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024203. doi: 10.11858/gywlxb.20210810

内部爆炸载荷作用下砌体墙结构的失效规律

doi: 10.11858/gywlxb.20210810
基金项目: 国家重点研发计划项目子课题(2016YFC0801204)
详细信息
    作者简介:

    曹宇航(1996-),男,硕士研究生,主要从事毁伤防护与技术研究. E-mail:yanxiu153@qq.com

    通讯作者:

    张晓伟(1982-),男,博士,副教授,主要从事冲击动力学、毁伤与防护技术研究.E-mail:mezhangxw@bit.edu.cn

  • 中图分类号: O383

Failure Characteristics of Masonry Wall under Internal Explosion

  • 摘要: 为了探究钢筋混凝土框架-砌体墙建筑物的内爆毁伤效应,开展了内爆载荷下砌体墙结构动力响应和失效规律研究。采用数值模拟方法,并结合理论分析,研究了不同当量内爆载荷下砌体墙的失效机理以及失效形式转化过程。结果表明,小药量内部爆炸时,砌体墙的主要失效形式为弯曲导致的墙面开裂。随着药量增加,墙体边界在首道冲击波反射超压作用下发生以剪切变形为主导的失效。而在大药量条件下,首道冲击波超压使砌体墙材料达到极限抗压强度而发生压溃失效。研究结果可为砌体墙结构毁伤评估与防护设计提供技术参考。

     

  • 图  单个房间内部爆炸有限元模型

    Figure  1.  Finite element model of a single room under internal explosion

    图  砌体墙的材料模型

    Figure  2.  Material models for the masonry wall

    图  文献[15]中的实验装置示意图

    Figure  3.  Schematic diagram of experiment device in Ref.[15]

    图  实验砌体墙及有限元模型

    Figure  4.  Masonry walls for experiment and finite element model

    图  墙体破坏范围对比

    Figure  5.  Comparison of masonry wall failure range

    图  房间中部剖面压力云图

    Figure  6.  Pressure distribution at the middle cross-section of room

    图  墙面壁面压力峰值分布

    Figure  7.  Peak pressure distribution of t wall surface

    图  墙面中心壁面压力时程曲线

    Figure  8.  Pressure history curves at the center of the wall

    图  典型砌体墙开裂形式[7]

    Figure  9.  Typical cracking modes of masonry wall[7]

    图  10  竖向裂缝示意图

    Figure  10.  Schematic diagram of vertical cracking

    图  11  水平裂缝示意图

    Figure  11.  Schematic diagram of horizontal cracking

    图  12  斜向裂缝示意图

    Figure  12.  Schematic diagram of diagonal cracking

    图  13  双向固支砌体墙裂缝分布

    Figure  13.  Crack distribution of masonry wall with two-way fixed support

    图  14  横向载荷p与斜向裂缝角度θ的关系曲线

    Figure  14.  Relationship between lateral load p and diagonal cracking angle $\theta $

    图  15  6 kg TNT药量下砌体墙的失效过程

    Figure  15.  Failure process of masonry wall with 6 kg TNT explosion

    图  16  弯曲主导的失效模式中不同药量下墙体的失效特征(上图为开裂形式,下图为速度分布)

    Figure  16.  Failure characteristics of the wall dominated by bending (Upper figures correspond to cracking form, and lower figures correspond to velocity distribution.)

    图  17  50 kg TNT药量下墙体的毁伤过程(1/4模型)

    Figure  17.  Damage process of wall with 50 kg TNT (1/4 model)

    图  18  不同药量下墙体中心水平轴线速度分布(40 ms)

    Figure  18.  Velocity distribution at the center horizontal axis of the wall with different TNT equivalence (40 ms)

    图  19  100 kg TNT药量下中心水平轴线不同位置的超压曲线

    Figure  19.  Overpressure curves at different locations of the center horizontal axis of the wall with 100 kg TNT

    图  20  100 kg TNT药量下墙体的毁伤过程(1/4模型)

    Figure  20.  Damage process of the wall with 100 kg TNT (1/4 model)

    图  21  100 kg TNT药量下墙体中心水平轴线速度分布(40 ms)

    Figure  21.  Velocity distribution at the center horizontal axis of the wall with 100 kg TNT equivalence (40 ms)

    表  1  砖块和砂浆的基本材料参数[10-12]

    Table  1.   Basic material parameters of brick and mortar[10-12]

    Materialp-$\alpha $ equation of state RHT strength model
    $\,\rho $0/(kg·m−3)$\alpha_0$Npel/MPapcomp/GPaE/GPaνfc/MPaft/ fcfv/ fc
    Mortar21001.3332.42.51.440.20 7.20.080.15
    Brick18001.3335.22.54.710.1215.70.100.18
    下载: 导出CSV

    表  2  空气材料参数[13]

    Table  2.   Material parameters of air[13]

    $\,\rho $/(kg·m−3)T/Kc/(kJ·kg−1·K−1)
    1.225288.20.718
    下载: 导出CSV

    表  3  TNT材料参数[13]

    Table  3.   Material parameters of TNT[13]

    $\,\rho $/(kg·m−3)A/GPaB/GPaR1R2$\omega $Em0/(kJ·m−3)
    1630373.83.754.150.90.356.0 × 106
    下载: 导出CSV

    表  4  数值模拟结果与实验数据对比

    Table  4.   Comparison of numerical simulation results and experimental data

    Method Peak overpressure of shock wave/MPa
    2 m6 m10 m16 m20 m28 m36 m
    Experiment[16]7.6841.6241.0570.7210.6050.4670.387
    Numerical simulation6.7551.4300.9690.7510.6130.4570.368
    Relative error/%−12.10−11.90−8.334.161.32−2.14−4.91
    下载: 导出CSV
  • [1] SMITH P D, MAYS G C, ROSE T A, et al. Small scale models of complex geometry for blast overpressure assessment [J]. International Journal of Impact Engineering, 1992, 12(3): 345–360. doi: 10.1016/0734-743X(92)90112-7
    [2] 王瑀. 典型结构内部爆炸波的传播规律与超压荷载模型[D]. 天津: 天津大学, 2008.

    WANG Y. Interior propagation of blast wave and overpressure model for common structures [D]. Tianjin: Tianjin University, 2008.
    [3] 张晓伟, 张庆明, 施鹏, 等. 内爆条件下建筑物等效载荷研究 [J]. 北京理工大学学报, 2013, 33(2): 133–138. doi: 10.3969/j.issn.1001-0645.2013.02.005

    ZHANG X W, ZHANG Q M, SHI P, et al. Investigation on the equivalent loading of constructions under internal explosion [J]. Journal of Beijing Institute of Technology, 2013, 33(2): 133–138. doi: 10.3969/j.issn.1001-0645.2013.02.005
    [4] 陈鹏宇, 侯海量, 金键, 等. 舰船舱内爆炸载荷简化载荷计算模型 [J]. 舰船科学技术, 2020, 42(17): 22–29.

    CHEN P Y, HOU H L, JIN J, et al. Simplified calculation model for explosion loading in ship cabin [J]. Ship Science and Technology, 2020, 42(17): 22–29.
    [5] 杨科之, 董军, 吴平安, 等. 砌体隔墙的抗爆炸能力分析[C]//第十三届全国结构工程学术会议论文集(第Ⅲ册). 北京: 清华大学出版社, 2004: 146–151.
    [6] SCHNEIDER J M, RAMIN M V, STOTTMEISTER A, et al. Characterization of debris throw from masonry wall sections subjected to blast [J]. Engineering Structures, 2019, 203: 109729.
    [7] KEYS R A, CLUBLEY S K. Experimental analysis of debris distribution of masonry panels subjected to long duration blast loading [J]. Engineering Structures, 2017, 130: 229–241.
    [8] ZHOU X, HAO H, DEEKS A. Numerical modeling of response and damage of masonry walls to blast loading [J]. Transactions of Tianjin University, 2006, 12: 132–137.
    [9] 李娟, 丛培宇, 刘香, 等. 内爆作用下不同类型填充墙对RC框架结构的影响 [J]. 工程爆破, 2020, 26(4): 28–34. doi: 10.3969/j.issn.1006-7051.2020.04.005

    LI J, CONG P Y, LIU X, et al. Influence of different types infill walls on RC frame structure under implosion [J]. Engineering Blasting, 2020, 26(4): 28–34. doi: 10.3969/j.issn.1006-7051.2020.04.005
    [10] 高连玉, 徐建. 砌体结构设计规范: GB 50003—2011 [S]. 北京: 中国建筑工业出版社, 2011.
    [11] MICHALOUDIS G, GEBBEKEN N. Modeling masonry walls under far-field and contact detonations [J]. International Journal of Impact Engineering, 2019, 123: 84–97.
    [12] 范俊余, 方秦, 张亚栋, 等. 砖墙抗爆性能的数值模拟研究 [J]. 防护工程, 2011(5): 35–40.

    FAN J Y, FANG Q, ZHANG Y D, et al. Numerical simulation of the anti-blast properties of masonry walls [J]. Protective Engineering, 2011(5): 35–40.
    [13] Century Dynamics Inc.. Theory manual for Autodyn [M]. Texas: Century Dynamics Inc., 2005.
    [14] 汪维, 刘瑞朝, 李林, 等. 不同爆炸距离下单向支撑方形钢筋混凝土板破坏模式数值模拟研究 [J]. 兵工学报, 2015, 36(Suppl 1): 233–241.

    WANG W, LIU R C, LI L, et al. Numerical simulation of one-way square reinforced concrete slab at different blast distances [J]. Acta Armamentarii, 2015, 36(Suppl 1): 233–241.
    [15] 张玉磊, 王胜强, 袁建飞, 等. 方形坑道内爆炸冲击波传播规律 [J]. 含能材料, 2020, 28(1): 46–51.

    ZHANG Y L, WANG S Q, YUAN J F, et al. Experimental study on the propagation law of blast waves in a square tunnel [J]. Chinese Journal of Energetic Materials, 2020, 28(1): 46–51.
    [16] 熊维. 近距离爆炸下砌体填充墙局部破坏试验研究与数值模拟 [D]. 天津: 天津大学, 2015.

    XIONG W. Experimental study and numerical simulation of local damage of unreinforced masonry under close-in explosion [D]. Tianjin: Tianjin University, 2015.
    [17] Department of Defense. UFC 3-340-02 structures to resist the effects of accidental explosions [M]. New York: National Institute of Building Sciences, 2008.
    [18] JONES N. 结构冲击 [M]. 2版. 许骏, 蒋平, 译. 北京: 国防工业出版社, 2018: 57–72.

    JONES N. Structural impact [M]. 2nd ed.Translated by XU J, JIANG P. Beijing: National Defense Industry Press, 2018: 57–72.
  • 加载中
图(21) / 表(4)
计量
  • 文章访问数:  1031
  • HTML全文浏览量:  540
  • PDF下载量:  33
出版历程
  • 收稿日期:  2021-06-10
  • 修回日期:  2021-07-07

目录

    /

    返回文章
    返回