内爆荷载作用下PC箱梁桥的动态响应过程

杨赞 韩国振 严波 刘飞

杨赞, 韩国振, 严波, 刘飞. 内爆荷载作用下PC箱梁桥的动态响应过程[J]. 高压物理学报, 2021, 35(1): 014201. doi: 10.11858/gywlxb.20200585
引用本文: 杨赞, 韩国振, 严波, 刘飞. 内爆荷载作用下PC箱梁桥的动态响应过程[J]. 高压物理学报, 2021, 35(1): 014201. doi: 10.11858/gywlxb.20200585
YANG Zan, HAN Guozhen, YAN Bo, LIU Fei. Dynamic Response Process of PC Box-Girder Bridge under Implosion Load[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 014201. doi: 10.11858/gywlxb.20200585
Citation: YANG Zan, HAN Guozhen, YAN Bo, LIU Fei. Dynamic Response Process of PC Box-Girder Bridge under Implosion Load[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 014201. doi: 10.11858/gywlxb.20200585

内爆荷载作用下PC箱梁桥的动态响应过程

doi: 10.11858/gywlxb.20200585
基金项目: 国家自然科学基金(51708549)
详细信息
    作者简介:

    杨 赞(1995-),男,硕士研究生,主要从事交通基础设施安全与评估研究. E-mail:825126208@qq.com

    通讯作者:

    严 波(1972-),男,博士,教授,主要从事交通基础设施安全与评估研究. E-mail:boyan@nudt.edu.cn

  • 中图分类号: O347.3

Dynamic Response Process of PC Box-Girder Bridge under Implosion Load

  • 摘要: 采用三阶段连续耦合有限元方法,对预应力钢筋砼(Prestressed reinforced concrete,PC)箱梁桥在内爆荷载作用下的动态响应过程进行了数值模拟,综合考虑了结构自重和预应力的影响,得到了PC箱梁桥局部和整体的破坏模式,并分析了破坏机理。结果表明:三阶段连续耦合有限元方法再现了PC箱梁桥局部破坏导致整体垮塌的物理过程;初始应力阶段,PC箱梁桥应力施加符合工程实际;局部响应阶段,腹板与顶板连接部位产生裂缝,顶板与底板在中央位置形成破口;整体响应阶段,在重力和预应力的作用下,箱梁桥先向上起拱,后向下垮塌,最终发生弯曲破坏。

     

  • 图  钢筋混凝土板构件配筋及爆炸工况

    Figure  1.  Rebar arrangement and blasting conditions of reinforced concrete slab

    图  试验结果与数值模拟结果的对比

    Figure  2.  Comparison of experimental and numerical simulation results

    图  箱梁桥有限元模型

    Figure  3.  Finite element model of box-girder bridge

    图  预应力钢筋轴力云图

    Figure  4.  Axial force nephogram of prestressed reinforcement

    图  预应力钢筋单元轴力时程曲线

    Figure  5.  Axial force time history curve of prestressed reinforcement element

    图  箱梁压力云图

    Figure  6.  Pressure nephogram of box girder

    图  混凝土单元Z向应力时程曲线

    Figure  7.  Z-stress time history curve of concrete element

    图  0.80 s时局部响应阶段箱梁桥的损伤破坏

    Figure  8.  Damage of box-girder bridge at local response stage at 0.80 s

    图  2.50 s时整体响应阶段PC箱梁的损伤破坏

    Figure  9.  Damage of PC box girder at overall response stage at 2.50 s

    图  10  1/4箱梁桥的压力云图

    Figure  10.  Pressure of one fourth box-girder bridge

    图  11  局部响应阶段顶板损伤破坏历程

    Figure  11.  Damage history of top flange at local response stage

    图  12  局部响应阶段底板损伤破坏历程

    Figure  12.  Damage history of bottom flange at local response stage

    图  13  混凝土单元位移时程曲线

    Figure  13.  Displacement time history curve of concrete element

    图  14  整体响应阶段箱梁桥损伤破坏历程

    Figure  14.  Damage history of box-girder bridge at overall response stage

    表  1  炸药的主要参数

    Table  1.   Main parameters of explosive

    $\,\rho\rm{_e} $/(kg·m−3)D/(m·s−1)pC-J/GPaA/GPaB/GPaR1R2$\omega $
    1 6306 930213713534.150.950.3
    下载: 导出CSV

    表  2  空气的主要参数

    Table  2.   Main parameters of air

    ρa/(kg·m−3)E0/(J·m−3)C0C1C2C3C4C5C6
    1.2932.5 × 10500000.40.40
    下载: 导出CSV

    表  3  混凝土和钢筋材料的基本参数

    Table  3.   Basic parameters of concrete and rebar

    Material$\,\rho $/(kg·m−3)E/MPa$\,\nu$σbc/MPa$\varepsilon $σy/MPa$E_{\rm{t} }$/GPa
    Concrete2 65028.30.234.40.01
    Rebar7 8002.1 × 1050.342530
    下载: 导出CSV

    表  4  试验结果与数值模拟结果对比

    Table  4.   Comparison of experimental and numerical simulation results

    r/cmlmax/cmd/cm$\delta $/%
    Exp.Sim.Exp.Sim.Exp.Sim.rlmaxd
    30.027.078.071.013.612.010.09.011.8
    下载: 导出CSV
  • [1] 孟祥瑞, 栗建桥, 宁建国, 等. 爆炸冲击波在仿桥梁结构内传播的数值模拟 [J]. 高压物理学报, 2019, 33(4): 042301. doi: 10.11858/gywlxb.20180649

    MENG X R, LI J Q, NING J G, et al. Numerical simulation of explosive shock wave propagation in imitation bridge structure [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 042301. doi: 10.11858/gywlxb.20180649
    [2] YAN B, ZHOU Y H, LIU F, et al. Numerical study on damage mechanism of PRC T-beam under close-in blast loading [J]. Applied Mechanics and Materials, 2015, 730: 55–64. doi: 10.4028/www.scientific.net/AMM.730.55
    [3] 方秦, 杨石刚, 陈力, 等. 天津港“8·12”特大火灾爆炸事故建筑物和人员损伤破坏情况及其爆炸威力分析 [J]. 土木工程学报, 2017(3): 12–18.

    FANG Q, YANG S G, CHEN L, et al. Analysis on the building damage, personnel casualties and blast energy of the “8·12” explosion in Tianjin port [J]. China Civil Engineering Journal, 2017(3): 12–18.
    [4] 梅迪, 李海超, 张艳萍, 等. 导弹对箱梁的毁伤效应分析 [J]. 军事交通学院学报, 2019, 21(4): 82–87.

    MEI D, LI H C, ZHANG Y P, et al. Analysis of damage effects of missile on box girder [J]. Journal of Military Transportation University, 2019, 21(4): 82–87.
    [5] 张勤彬, 程贵海, 徐中慧, 等. 贾木那大桥水压定向爆破及其数值模拟 [J]. 爆炸与冲击, 2019, 39(6): 065201. doi: 10.11883/bzycj-2018-0089

    ZHANG Q B, CHENG G H, XU Z H, et al. Directional water pressure blasting of Jamuna bridge and its numerical simulation [J]. Explosion and Shock Waves, 2019, 39(6): 065201. doi: 10.11883/bzycj-2018-0089
    [6] 胡志坚, 张一峰, 俞文生, 等. 近场爆炸时预应力混凝土梁体抗爆分析 [J]. 中国公路学报, 2019, 32(3): 71–80.

    HU Z J, ZHANG Y F, YU W S, et al. Anti-blast resistance analysis of prestressed concrete bridges under close-by blast [J]. China Journal of Highway and Transport, 2019, 32(3): 71–80.
    [7] YAO S J, ZHAO N, JIANG Z G, et al. Dynamic response of steel box girder under internal blast loading [J]. Advances in Civil Engineering, 2018, 9676298: 1–12.
    [8] TANG E K C, HAO H. Numerical simulation of a cable-stayed bridge response to blast loads, Part I: model development and response calculations [J]. Engineering Structures, 2010, 32(10): 3180–3192. doi: 10.1016/j.engstruct.2010.06.007
    [9] HAO H, TANG E K C. Numerical simulation of a cable-stayed bridge response to blast loads, Part Ⅱ: damage prediction and FRP strengthening [J]. Engineering Structures, 2010, 32(10): 3193–3205. doi: 10.1016/j.engstruct.2010.06.006
    [10] MAHONEY E E. Analyzing the effects of blast loads on bridges using probability, structural analysis, and performance criteria [D]. College Park: University of Maryland, 2007.
    [11] SUTHAR K N. Effect of dead, live and blast loads on a suspension bridge [D]. College Park: University of Maryland, 2007.
    [12] PAN Y X, VENTURA C E, CHEUNG M M S. Performance of highway bridges subjected to blast loads [J]. Engineering Structures, 2017, 151: 788–801. doi: 10.1016/j.engstruct.2017.08.028
    [13] 王向阳, 冯英骥. 爆炸冲击作用下连续梁桥动力响应和影响因素研究 [J]. 爆破, 2017, 34(3): 104–113. doi: 10.3963/j.issn.1001-487X.2017.03.019

    WANG X Y, FENG Y J. Study of dynamic response and influence factors of continuous girder bridge under blast loading [J]. Blasting, 2017, 34(3): 104–113. doi: 10.3963/j.issn.1001-487X.2017.03.019
    [14] SHIRAVAND M R, PARVANEHRO P. Numerical study on damage mechanism of post-tensioned concrete box bridges under close-in deck explosion [J]. Engineering Failure Analysis, 2017, 81: 103–116. doi: 10.1016/j.engfailanal.2017.07.033
    [15] IBRAHIM A, SALIM H. Finite-element analysis of reinforced-concrete box girder bridges under close-in detonations [J]. Journal of Performance of Constructed Facilities, 2013, 27(6): 774–784. doi: 10.1061/(ASCE)CF.1943-5509.0000360
    [16] 汪维, 刘光昆, 汪琴, 等. 四边固支方形钢筋混凝土板抗爆试验研究 [J]. 兵工学报, 2018, 39(S1): 108–113.

    WANG W, LIU G K, WANG Q, et al. Experimental research on four-sides fixed square slabs under blast loading [J]. Acta Armamentarii, 2018, 39(S1): 108–113.
    [17] 戴志涵, 严波. 爆炸作用下斜拉桥A型钢筋砼桥塔动态响应过程模拟研究 [C]//第26届全国结构工程学术会议论文集(第Ⅲ册), 2017: 21–27.

    DAI Z H, YAN B. Study on dynamic response progress of reinforced concrete A-type cable-stayed bridge tower under blasting load [C]//Proceedings of the Twenty-Sixth National Conference on Structural Engineering (Ⅲ), 2017: 21–27.
    [18] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873.
    [19] CHEN G, HAO Y F, HAO H. 3D meso-scale modelling of concrete material in spall tests [J]. Materials and Structures, 2015, 48(6): 1887–1899. doi: 10.1617/s11527-014-0281-z
    [20] 张巍. 常规武器作用下斜拉桥结构的动力行为分析及损伤评估研究 [D]. 成都: 西南交通大学, 2007.

    ZHANG W. Research on dynamic behavior and damage assessment of cable-stayed bridges to conventional weapons effects [D]. Chengdu: Southwest Jiaotong University, 2007.
    [21] XU K, LU Y. Numerical simulation study of spallation in reinforced concrete plates subjected to blast loading [J]. Computers & Structures, 2006, 84(5/6): 431–438.
    [22] LI J, HAO H. Numerical study of concrete spall damage to blast loads [J]. International Journal of Impact Engineering, 2014, 68: 41–55. doi: 10.1016/j.ijimpeng.2014.02.001
    [23] 杨喻淇, 曾祥国, 韩荣辉, 等. 爆炸荷载作用桥梁动力响应及损伤的数值模拟 [J]. 四川建筑科学研究, 2012, 38(5): 19–23. doi: 10.3969/j.issn.1008-1933.2012.05.006

    YANG Y Q, ZENG X G, HAN R H, et al. The numerical simulation of dynamic response and damage of bridge under blast loading [J]. Sichuan Building Science, 2012, 38(5): 19–23. doi: 10.3969/j.issn.1008-1933.2012.05.006
    [24] ZHAO C F, CHEN J Y. Damage mechanism and mode of square reinforced concrete slab subjected to blast loading [J]. Theoretical and Applied Fracture Mechanics, 2013, 63/64: 54–62. doi: 10.1016/j.tafmec.2013.03.006
    [25] LUCCIONI B M, AMBROSINI R D, DANESI R F. Analysis of building collapse under blast loads [J]. Engineering Structures, 2004, 26(1): 63–71. doi: 10.1016/j.engstruct.2003.08.011
    [26] 庄茁. Abaqus/standard有限元软件入门指南 [M]. 北京: 清华大学出版社, 1998.

    ZHUANG Z. Abaqus/standard finite element software introduction guide [M]. Beijing: Tsinghua University Press, 1998.
    [27] 曹奇, 成艾国, 周泽, 等. 汽车座椅安全带固定点强度试验仿真模型改进 [J]. 中国机械工程, 2012, 23(14): 1707–1711. doi: 10.3969/j.issn.1004-132X.2012.14.018

    CAO Q, CHENG A G, ZHOU Z, et al. Simulation model improvement of vehicle seatbelt anchorage strength [J]. China Mechanical Engineering, 2012, 23(14): 1707–1711. doi: 10.3969/j.issn.1004-132X.2012.14.018
    [28] 王立军, 王伟, 叶步永. 大开口船舶角隅强度有限元分析研究 [J]. 浙江海洋学院学报(自然科学版), 2007, 26(4): 425–428.

    WANG L J, WANG W, YE B Y. The FEM analysis and research of the corner structure of large deck opening ship [J]. Journal of Zhejiang Ocean University (Natural Science), 2007, 26(4): 425–428.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  6297
  • HTML全文浏览量:  2563
  • PDF下载量:  25
出版历程
  • 收稿日期:  2020-07-06
  • 修回日期:  2020-07-27

目录

    /

    返回文章
    返回