叠合双层靶抗球形破片的侵彻能耗

徐瑞 智小琦 范兴华

徐瑞, 智小琦, 范兴华. 叠合双层靶抗球形破片的侵彻能耗[J]. 高压物理学报, 2020, 34(6): 065103. doi: 10.11858/gywlxb.20200551
引用本文: 徐瑞, 智小琦, 范兴华. 叠合双层靶抗球形破片的侵彻能耗[J]. 高压物理学报, 2020, 34(6): 065103. doi: 10.11858/gywlxb.20200551
XU Rui, ZHI Xiaoqi, FAN Xinghua. Energy Consumption of Composite Double-Layer Targets against Spherical Fragment Penetration[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065103. doi: 10.11858/gywlxb.20200551
Citation: XU Rui, ZHI Xiaoqi, FAN Xinghua. Energy Consumption of Composite Double-Layer Targets against Spherical Fragment Penetration[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065103. doi: 10.11858/gywlxb.20200551

叠合双层靶抗球形破片的侵彻能耗

doi: 10.11858/gywlxb.20200551
详细信息
    作者简介:

    徐 瑞(1996-),男,硕士研究生,主要从事战斗部毁伤技术研究. E-mail:2473077009@qq.com

    通讯作者:

    智小琦(1963-),女,博士,教授,主要从事战斗部毁伤技术及弹药易损性研究.E-mail:zxq4060@sina.com

  • 中图分类号: O385

Energy Consumption of Composite Double-Layer Targets against Spherical Fragment Penetration

  • 摘要: 为了研究影响叠合双层靶抗弹性能的因素,在靶板总厚度为7.2 mm的条件下,采用直径为9.5 mm、质量为8.05 g的钨合金球形破片侵彻单层和不同组合方式的叠合双层Q235钢靶板。弹道极限试验结果表明:(3.6 + 3.6) mm靶板最高,(5.4 + 1.8) mm靶板次之,(1.8 + 5.4) mm靶板最低,单层7.2 mm靶板与(5.4 + 1.8) mm叠合靶基本相同。研究发现,叠合靶排列方式不同,则其破坏模式与耗能模式不同。当双层靶板均产生冲塞破坏时,压缩耗能和凹陷耗能是影响靶板抗弹性能的主要因素;当前靶板为冲塞破坏、后靶板为扩孔破坏时,凹陷耗能是影响靶板抗弹性能的主要因素。通过对多种组合靶的能耗计算表明,(3.6 + 3.6) mm的排列是本研究条件下的最优组合。这些研究结果对防护装置的设计有重要的参考价值。

     

  • 图  试验装置示意图

    Figure  1.  Schematic diagram of test equipment

    图  破片与尼龙弹托实物

    Figure  2.  Pictures of fragment and nylon sabot

    图  双层靶板剖面

    Figure  3.  Profiles of double-layer targets

    图  不同靶板的靶前和靶后状态

    Figure  4.  Front and back states of different targets

    图  不同速度下靶板变形程度对比

    Figure  5.  Comparison of targets deformation at different speeds

    图  回收破片与塞块

    Figure  6.  Recycle fragment and plugs

    图  薄板扩孔示意图

    Figure  7.  Schematic diagram of ductile failure

    图  靶板塑性凹陷示意图

    Figure  8.  Schematic of plastic deformation

    图  不同排列方式下着靶速度与凹陷变形程度的关系

    Figure  9.  Relationship between the hit speed and pitting deformation of targets in different arrangements

    图  10  不同厚度后靶板的变形程度

    Figure  10.  Deformation of targets with different thicknessees

    图  11  不同排列方式的总耗能

    Figure  11.  Total energy consumption in different arrangements

    表  1  钨球侵彻7.2 mm和(3.6 + 3.6) mm Q235钢靶试验数据

    Table  1.   Test data of 7.2 mm and (3.6 + 3.6) mm Q235 steel penetrated by tungsten alloy fragments

    No.h/mmv0/(m·s–1)v1/(m·s–1)ResultsNo.(h1+h2)/mmv0/(m·s–1)v1/(m·s–1)Results
    1-17.2837.0558.9Pennetration2-13.6 + 3.6652.5395.5Pennetration
    1-27.2787.3504.9Pennetration2-23.6 + 3.6631.4344.1Pennetration
    1-37.2718.5413.3Pennetration2-33.6 + 3.6619.0310.8Pennetration
    1-47.2653.5287.0Pennetration2-43.6 + 3.6604.0266.2Pennetration
    1-57.2570.1240.5Pennetration2-53.6 + 3.6579.2172.3Pennetration
    1-67.2552.5152.4Pennetration2-63.6 + 3.6565.1 94.6Pennetration
    1-77.2532.5 79.5Pennetration2-73.6 + 3.6561.8 62.1Pennetration
    1-87.2494.3No pennetration2-83.6 + 3.6532.7No pennetration
    下载: 导出CSV

    表  2  钨球侵彻(5.4 + 1.8) mm和(1.8 + 5.4) mm Q235钢靶试验数据

    Table  2.   Test data of (5.4 + 1.8) mm and (1.8 + 5.4) mm Q235 steel penetrated by tungsten alloy fragments

    No.(h1+h2)/mmv0/(m·s–1)v1/(m·s–1)ResultsNo.(h1+h2)/mmv0/(m·s–1)v1/(m·s–1)Results
    3-15.4 + 1.8601.9301.2Pennetration4-11.8 + 5.4602.5269.1Pennetration
    3-25.4 + 1.8577.6216.0Pennetration4-21.8 + 5.4555.7181.3Pennetration
    3-35.4 + 1.8553.4189.5Pennetration4-31.8 + 5.4526.3133.1Pennetration
    3-45.4 + 1.8542.6150.0Pennetration4-41.8 + 5.4507.7106.6Pennetration
    3-55.4 + 1.8529.3 86.5Pennetration4-51.8 + 5.4503.9 74.2Pennetration
    3-65.4 + 1.8524.3 50.1Pennetration4-61.8 + 5.4499.5 53.4Pennetration
    3-75.4 + 1.8472.3No pennetration
    下载: 导出CSV

    表  3  不同排列方式靶板着靶速度与后靶板凹陷变形的关系

    Table  3.   Relationship between the hit speed and pitting deformation of the targets in different arrangements

    (h1 + h2)/mmv/(m·s–1)d/mm(h1 + h2)/mmv/(m·s–1)d/mm(h1 + h2)/mmv/(m·s–1)d/mm
    5.4 + 1.8601.9 7.471.8 + 5.4602.57.033.6 + 3.6652.510.09
    577.610.93555.77.23631.410.35
    553.414.04526.37.31619.010.67
    542.615.33507.77.41604.011.02
    529.316.84503.97.42594.011.37
    524.317.39499.57.43565.112.82
    561.813.06
    下载: 导出CSV

    表  4  试验用的破片和靶板材料参数[20-22]

    Table  4.   Material parameters of fragment and target used in the test[20-22]

    Material$\;\rho $/(g·cm–3)E/GPac/(m·s–1)$\sigma $y/MPaDP
    Tungsten alloy17.904174831
    Q235 steel 7.852145221320.5305.82.7515
    下载: 导出CSV

    表  5  试验结果和计算结果比较

    Table  5.   Comparison of the test and calculation results

    (h1+h2)/mmE2/JE3/JE4/JE5/JEt/Jδ/%
    CalculationExperiment
    5.4 + 1.8336.2269.654.4386.31046.51095.9–4.5
    1.8 + 5.4435.7296.2209.4 941.3 984.6–4.4
    3.6 + 3.6564.4244.1439.71249.21259.5–0.8
    下载: 导出CSV

    表  6  试验结果和计算结果比较

    Table  6.   Comparison of the test and calculation results

    (h1+h2)/mmv50/(m·s–1)$\delta $/%
    CalculationExperiment
    5.4 + 1.8509.9521.8–2.3
    1.8 + 5.4483.6494.6–2.2
    3.6 + 3.6557.1559.4–0.4
    下载: 导出CSV

    表  7  不同排列方式的靶板耗能

    Table  7.   Targets energy dissipation in different arrangement

    (h1+h2)/mmE2/JE3/JE4/JE5/JEt/J
    1.0 + 6.2289.8 360.2145.6 895.6
    1.4 + 5.8398.8325.1195.7 919.6
    1.8 + 5.4435.7 296.2 209.4 941.3
    2.0 + 5.2447.9 283.4 238.7 970.0
    3.0 + 4.2462.8 247.9 378.51089.2
    3.2 + 4.0473.6 247.1 397.61118.3
    3.4 + 3.8488.4244.8436.61169.8
    3.6 + 3.6564.4244.1439.71249.2
    3.8 + 3.4493.4244.8 432.41170.6
    4.0 + 3.2487.2 247.1 419.91154.2
    4.2 + 3.0480.3250.8 405.01136.1
    5.2 + 2.0341.7 249.8 60.4409.01060.9
    5.4 + 1.8336.2269.6 54.4 386.31046.5
    5.8 + 1.4339.5 310.742.3 341.31033.8
    6.2 + 1.0318.0 355.130.2 272.2 975.5
    下载: 导出CSV
  • [1] 蒋志刚, 曾首义, 周建平. 刚性尖头弹侵彻贯穿金属薄靶板耗能分析 [J]. 兵工学报, 2004, 25(6): 777–781. doi: 10.3321/j.issn:1000-1093.2004.06.028

    JIANG Z G, ZENG S Y, ZHOU J P. Analysis on energy dissipation of thin metallic plates struck by rigid sharp-nosed projectiles [J]. Acta Armamentarii, 2004, 25(6): 777–781. doi: 10.3321/j.issn:1000-1093.2004.06.028
    [2] 宋殿义, 蒋志刚, 曾首义. 刚性尖头弹垂直撞击金属靶板耗能分析 [J]. 弹道学报, 2005, 17(2): 28–32. doi: 10.3969/j.issn.1004-499X.2005.02.006

    SONG D Y, JIANG Z G, ZENG S Y. Analysis on energy absorption of metallic targets struck by rigid sharp-nosed projectiles [J]. Journal of Ballistics, 2005, 17(2): 28–32. doi: 10.3969/j.issn.1004-499X.2005.02.006
    [3] 贾光辉, 张国伟, 裴思行. 钨球侵彻薄靶板的实验研究 [J]. 兵工学报, 1998, 19(2): 185–188.

    JIA G H, ZHANG G W, PEI S X. Experiment study on tungsten spheres penetrate thin target [J]. Acta Armamentarii, 1998, 19(2): 185–188.
    [4] 陈小伟, 张方举, 梁斌, 等. A3钢钝头弹撞击45钢板破坏模式的试验研究 [J]. 爆炸与冲击, 2006, 26(3): 199–207. doi: 10.3321/j.issn:1001-1455.2006.03.002

    CHEN X W, ZHANG F J, LIANG B, et al. Three modes of penetration mechanics of A3 steel cylindrical projectiles impact onto 45 steel plates [J]. Explosion and Shock waves, 2006, 26(3): 199–207. doi: 10.3321/j.issn:1001-1455.2006.03.002
    [5] LIANG C C, YANG M F, WU P W, et al. Resistant performance of perforation of multi-layered targets using an estimation procedure with marine application [J]. Ocean Engineering, 2005, 32(3/4): 441–468.
    [6] 任善良, 文鹤鸣, 周琳. 平头弹穿透接触式双层金属板的理论研究 [J]. 高压物理学报, 2018, 32(3): 035103.

    REN S L, WEN H M, ZHOU L. Theoretical study of the perforation of double-layered metal targets without spacing struck by flat-ended projectiles [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035103.
    [7] 肖毅华, 董晃晃, 周建民. 平头弹正侵彻单层和多层钢靶的SPH模拟和解析分析 [J]. 振动与冲击, 2018, 37(19): 166–173, 210.

    XIAO Y H, DONG H H, ZHOU J M. SPH simulation and analytical analysis for blunt projectiles normally penetrating into mono-layer and multi-layer steel targets [J]. Journal of Vibration and Shock, 2018, 37(19): 166–173, 210.
    [8] CORRAN R S J, SHADBOLT P J, RUIZ C. Impact loading of plates: an experimental investigation [J]. International Journal of Impact Engineering, 1983, 1(1): 3–22. doi: 10.1016/0734-743X(83)90010-6
    [9] 邓云飞, 张伟, 曹宗胜, 等. 叠层顺序对双层A3钢薄板抗侵彻性能的影响 [J]. 爆炸与冲击, 2013, 33(3): 263–268. doi: 10.3969/j.issn.1001-1455.2013.03.007

    DENG Y F, ZHANG W, CAO Z S, et al. Influences of layer order on ballistic resistance of double-layered thin A3 steel plates [J]. Explosion and Shock Waves, 2013, 33(3): 263–268. doi: 10.3969/j.issn.1001-1455.2013.03.007
    [10] GUPTA N K, IQBAL M A, SEKHON G S. Effect of projectile nose shape, impact velocity and target thickness on the deformation behavior of layered plates [J]. International Journal of Impact Engineering, 2006, 35(1): 37–60.
    [11] DEY S, BORVIK T, TENG X, et al. On the ballistic resistance of double-layered steel plates: an experimental and numerical investigation [J]. International Journal of Solids and Structures, 2007, 44(20): 6701–6723. doi: 10.1016/j.ijsolstr.2007.03.005
    [12] 郑超, 朱秀荣, 辛海鹰, 等. 厚度和层间界面对Ti6Al4V钛合金抗弹性能的影响 [J]. 稀有金属材料与工程, 2019, 48(1): 242–248.

    ZHENG C, ZHU X R, XIN H Y, et al. Effects of target thickness and macroscopic interface on the ballistic performance of Ti6Al4V titanium alloy [J]. Rare Metal Materials and Engineering, 2019, 48(1): 242–248.
    [13] 赵国志. 穿甲工程力学 [M]. 北京: 兵器工业出版社, 1992: 64–65.

    ZHAO G Z. Penetration engineering mechanics [M]. Beijing: Ordnance Industry Press, 1992: 64–65.
    [14] 郭伟国, 李玉龙, 索涛. 应力波基础简明教程 [M]. 西安: 西北工业大学出版社, 2007: 7–8.

    GUO W G, LI Y L, SUO T. Concise course on stress wave [M]. Xi’an: Northwestern Polytechnical University Press, 2007: 7–8.
    [15] 马晓青, 韩峰. 高速碰撞动力学 [M]. 北京: 国防工业出版社, 1998: 240–244.

    MA X Q, HAN F. High speed collision dynamics [M]. Beijing: National Defense Industry Press, 1998: 240–244.
    [16] 周楠, 王金相, 谢君, 等. 球形弹丸作用下钢/铝爆炸复合靶的抗侵彻性能计算与分析 [J]. 高压物理学报, 2013, 27(6): 839–846. doi: 10.11858/gywlxb.2013.06.008

    ZHOU N, WANG J X, XIE J, et al. Calculation and analysis for the anti-penetration performance of explosively welded steel/aluminum plates target by the penetration of spherical projectile [J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 839–846. doi: 10.11858/gywlxb.2013.06.008
    [17] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceeding of the 7th International Symposium on Ballistics. The Hague, Netherlands, 1983: 541–547.
    [18] COWPER G R, SYMONDS P S. Strain-hardening and strain-rate effects in the impact loading of cantilever beams [R]. Providence: Brown University, 1957.
    [19] 余同希, 薛璞. 工程塑性力学 [M]. 北京: 高等教育出版社, 2010: 233–236.

    YU T X, XUE P. Plasticity in engineering [M]. Beijing: Higher Education Press, 2010: 233–236.
    [20] 丁发兴, 余志武, 温海林. 高温后Q235钢材力学性能试验研究 [J]. 建筑材料学报, 2006, 9(2): 245–249. doi: 10.3969/j.issn.1007-9629.2006.02.022

    DING F X, YU Z W, WEN H L. Experimental research on mechanical properties of Q235 steel after high temperature treatment [J]. Journal of Building Materials, 2006, 9(2): 245–249. doi: 10.3969/j.issn.1007-9629.2006.02.022
    [21] 张修路, 罗雰, 郭志成, 等. 高压下钨弹性和热力学性质的第一性原理研究 [J]. 原子与分子物理学报, 2015, 32(3): 512–518. doi: 10.3969/j.issn.1000-0364.2015.03.028

    ZHANG X L, LUO F, GUO Z C, et al. Ab initio calculation of elastic and thermodynamic properties of W under high pressure [J]. Journal of Atomic and Molecular Physics, 2015, 32(3): 512–518. doi: 10.3969/j.issn.1000-0364.2015.03.028
    [22] 陈俊岭, 舒文雅, 李金威. Q235钢材在不同应变率下力学性能的试验研究 [J]. 同济大学学报(自然科学版), 2016, 44(7): 1071–1075. doi: 10.11908/j.issn.0253-374x.2016.07.014

    CHEN J L, SHU W Y, LI J W. Experimental study on dynamic mechanical property of Q235 steel at different strain rates [J]. Journal of Tongji University (Natural Science), 2016, 44(7): 1071–1075. doi: 10.11908/j.issn.0253-374x.2016.07.014
    [23] 王若林. 钢结构原理 [M]. 南京: 东南大学出版社, 2016: 37–38.

    WANG R L. Principles of steel structure [M]. Nanjing: Southeast University Press, 2016: 37–38.
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  6194
  • HTML全文浏览量:  2987
  • PDF下载量:  32
出版历程
  • 收稿日期:  2020-04-23
  • 修回日期:  2020-05-07

目录

    /

    返回文章
    返回