近爆作用下中空夹层超高性能钢管混凝土柱的抗爆性能

邓旭辉 王达锋

邓旭辉, 王达锋. 近爆作用下中空夹层超高性能钢管混凝土柱的抗爆性能[J]. 高压物理学报, 2020, 34(6): 065201. doi: 10.11858/gywlxb.20200540
引用本文: 邓旭辉, 王达锋. 近爆作用下中空夹层超高性能钢管混凝土柱的抗爆性能[J]. 高压物理学报, 2020, 34(6): 065201. doi: 10.11858/gywlxb.20200540
DENG Xuhui, WANG Dafeng. Anti-Blast Performance of Ultra-High Performance Concrete-Filled Double Steel Tubes under Close-in Blast Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065201. doi: 10.11858/gywlxb.20200540
Citation: DENG Xuhui, WANG Dafeng. Anti-Blast Performance of Ultra-High Performance Concrete-Filled Double Steel Tubes under Close-in Blast Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065201. doi: 10.11858/gywlxb.20200540

近爆作用下中空夹层超高性能钢管混凝土柱的抗爆性能

doi: 10.11858/gywlxb.20200540
基金项目: 湖南创新型省份建设专项(2019RS1059)
详细信息
    作者简介:

    邓旭辉(1975-),男,博士,副教授,主要从事工程结构设计与分析研究. E-mail: dengbh@xtu.edu.cn

    通讯作者:

    王达锋(1995-),男,硕士研究生,主要从事工程结构设计与分析研究. E-mail: 369909072@qq.com

  • 中图分类号: O389

Anti-Blast Performance of Ultra-High Performance Concrete-Filled Double Steel Tubes under Close-in Blast Loading

  • 摘要: 为研究中空夹层超高性能钢管混凝土(Ultra-high performance concrete-filled double skin steel tubes, UHPCFDST)柱在近爆载荷作用下的抗爆性能,建立了TNT炸药-UHPCFDST柱-空气三维有限元模型,采用ALE多物质流固耦合算法分析了UHPCFDST柱在近爆作用下的损伤机理、能量吸收特性和影响参数,计算结果表明:UHPCFDST柱在近爆作用下的典型破坏模式为钢管的塑性变形和混凝土芯柱的凹陷破坏,且混凝土芯柱的损伤过程可以分为3个阶段;与填充普通混凝土柱相比,UHPCFDST柱具有优异的抗爆性能;在一定范围内,减小截面空心率可以有效提升UHPCFDST柱的抗爆性能;增加内外钢管厚度均可提升UHPCFDST柱的抗爆性能,但增加外层钢管厚度时提升效果更显著;有无轴压对UHPCFDST柱的变形有较大影响,在一定范围内增加轴压比有利于抵抗整体变形,但同时局部变形增大,当轴压比较大时,UHPCFDST柱在近爆载荷和轴向载荷作用下失去承载能力。

     

  • 图  普通强度混凝土和UHPC的$\lambda $$\eta $

    Figure  1.  $\lambda $ and $\eta $ values in normal strength concrete and UHPC

    图  整体计算模型

    Figure  2.  Overall calculation model

    图  UHPCFDST柱横截面几何尺寸和网格划分

    Figure  3.  Geometry and meshing of UHPCFDST columns

    图  网格划分细节

    Figure  4.  Mesh details

    图  不同炸药当量下实验与数值模拟凹陷变形对比

    Figure  5.  Comparison of the sag deformation between experiments and numericalsimulations under different explosive equivalents

    图  UHPCFDST柱钢管不同时刻的应力云图

    Figure  6.  Stress diagram of the UHPCFDST column steel pipe at different time

    图  UHPCFDST柱不同时刻的损伤轮廓

    Figure  7.  Damage profile of the UHPCFDST column at different time

    图  UHPCFDST柱的塑性变形能时程曲线

    Figure  8.  Plastic deformation energy-time history curves of the UHPCFDST column

    图  UHPCFDST柱的动能时程曲线

    Figure  9.  Kinetic energy-time history curves of the UHPCFDST column

    图  10  不同混凝土强度CFDST柱的局部变形时程曲线

    Figure  10.  Local deformation-time history curves of the CFDST column with different concrete strength

    图  11  不同混凝土强度CFDST柱的整体变形时程曲线

    Figure  11.  Overall deformation-time history curves of the CFDST column with different concrete strength

    图  12  混凝土强度对CFDST柱变形的影响

    Figure  12.  Effect of concrete strength on deformation of the CFDST columns

    图  13  不同截面空心率UHPCFDST柱局部变形时程曲线

    Figure  13.  Local deformation-time history curves of the UHPCFDST column with different hollow ratios

    图  14  不同截面空心率UHPCFDST柱整体变形时程曲线

    Figure  14.  Overall deformation-time history curves of the UHPCFDST column with different hollow ratios

    图  15  截面空心率对UHPCFDST柱变形的影响

    Figure  15.  Influence of cross-section hollow ratios on the UHPCFDST column deformation

    图  16  外钢管厚度变化时UHPCFDST柱的局部变形时程曲线

    Figure  16.  Local deformation-time history curves of the UHPCFDST column with various outer steel thicknesses

    图  17  外钢管厚度变化时UHPCFDST柱的整体变形时程曲线

    Figure  17.  Overall deformation-time history curves of the UHPCFDST column with various outer steel thicknesses

    图  18  内外钢管厚度变化对UHPCFDST柱变形的影响

    Figure  18.  Influence of the thickness of inner and outer steel pipes on the UHPCFDST column deformation

    图  19  不同轴压比UHPCFDST柱的局部变形时程曲线

    Figure  19.  Local deformation-time history curves of the UHPCFDST column under various axial compression ratios

    图  20  不同轴压比UHPCFDST柱的整体变形时程曲线

    Figure  20.  Overall deformation-time history curves of the UHPCFDST column under variousaxial compression ratios

    表  1  TNT炸药的主要参数[8]

    Table  1.   Main parameters of TNT explosives[8]

    A/GPaB/GPaR1R2$\omega $$\;\rho $e/(kg·m−3)D/(m·s−1)p/GPaE/(MJ·kg−1)
    373.83.754.50.90.351 6405730196.93
    下载: 导出CSV

    表  2  空气的主要参数

    Table  2.   Main parameters of air

    C0C1C2C3C4C5C6$\;\rho $a/(kg·m−3)E0/(J·m−3)V0
    00000.40.401.292.5 × 1051.0
    下载: 导出CSV

    表  3  钢材的主要参数[1012]

    Table  3.   Main parameters of steel[1012]

    Material$\;\rho $s/(kg·m−3)Es/GPa$\nu $Y/MPa$\tau $/GPaC/s−1P
    Steel7 8502060.3348.5 2.16 8443.91
    下载: 导出CSV

    表  4  UHPC关键参数

    Table  4.   Key parameters of UHPC

    Material$\;\rho $0/(kg·m-3)Fc/MPaFt/MPa$\nu $B1WLZ/mm$\omega $
    UHPC2 400170180.190.8060.10
    下载: 导出CSV

    表  5  网格划分细节和结果

    Table  5.   Meshing details and results

    Mesh No.Meshing detailsDenting depth/mm
    Along the radialAlong the circumferenceAlong the height
    11 + 8 + 14010066.5
    22 + 15 + 28020072.6
    33 + 15 + 312030073.2
    下载: 导出CSV

    表  6  CFDST凹陷位移试验值[10]与数值模拟值对比

    Table  6.   Comparison of the CFDST depression displacement between experiments[10] and numerical simulations

    Explosive mass/kgCFDST depression displacement/mmError/%
    ExperimentSimulation
    529.328.62.4
    877.772.66.6
    下载: 导出CSV

    表  7  不同工况数值模型参数

    Table  7.   Model parameters in different working conditions

    GroupNo.Di/mmti/mmDo/mmto/mm
    Outer steel pipe thickness change115963254
    215963255
    315963256
    415963257
    Inner steel pipe thickness change515943256
    615953256
    715963256
    815973256
    下载: 导出CSV
  • [1] XU J C, WU C Q, XIANG H B, et al. Behaviour of ultra high performance fibre reinforced concrete columns subjected to blast loading [J]. Engineering Structures, 2016, 118(1): 97–107.
    [2] AOUDE H, BELGHITI M, COOK W D, et al. Response of steel fiber-reinforced concrete beams with and without stirrups [J]. ACI Structural Journal, 2012, 109(3): 359–367.
    [3] 金何伟, 刘中宪, 刘申永, 等. 钢管超高强钢纤维混凝土柱抗爆性能试验研究 [J]. 建筑结构, 2016, 46(4): 45–49.

    JIN H W, LIU Z X, LIU S Y, et al. Experimental study of ultra-high performance fiber reinforced concrete filled steel tube columns under blast loading [J]. Building Structure, 2016, 46(4): 45–49.
    [4] ZHANG F R, WU C Q, ZHAO X L, et al. Experimental and numerical study of blast resistance of square CFDST columns with steel-fibre reinforced concrete [J]. Engineering Structures, 2017, 149: 50–63. doi: 10.1016/j.engstruct.2016.06.022
    [5] 徐慎春, 刘中宪, 吴成清. 方形中空夹层钢管超高性能钢纤维混凝土柱抗爆性能数值模拟与实验验证 [J]. 振动与冲击, 2017, 36(1): 45–54.

    XU S C, LIU Z X, WU C Q. Numerical simulation and test validation for ultra-high performance steel fiber reinforced concrete-tilled double skin steel tube column under blast loading [J]. Journal of Vibration and Shock, 2017, 36(1): 45–54.
    [6] 徐慎春, 刘中宪, 吴成清. 圆形中空夹层钢管超高性能钢纤维混凝土柱抗爆性能野外实验与数值模拟 [J]. 爆炸与冲击, 2017, 37(4): 649–660.

    XU S C, LIU Z X, WU C Q. Field blast test and numerical simulation of ultra-high performance steel fiber reinforced concrete-filled double skin steel tube column under blast loading [J]. Explosion and Shock Waves, 2017, 37(4): 649–660.
    [7] 赵海鸥. LS-DYNA动力分析指南 [M]. 北京: 兵器工业出版社, 2003: 82–86.

    ZHAO H O. LS-DYNA dynamic analysis guide [M]. Beijing: Ordnance Industry Press, 2003: 82–86.
    [8] 于川, 李良忠, 黄毅民. 含铝炸药爆轰产物JWL状态方程研究 [J]. 爆炸与冲击, 1999, 19(3): 274–279.

    YU C, LI L Z, HUANG Y M. Studies on JWL equation of state of detonation product for aluminized explosives [J]. Explosion and Shock Waves, 1999, 19(3): 274–279.
    [9] 李翼祺, 马素贞. 爆炸力学 [M]. 北京: 科学出版社, 1992: 60–67.

    LI Y Q, MA S Z. Explosion mechanics[M]. Beijing: Science Press, 1992: 60–67.
    [10] LI M H, ZONG Z H, HAO H, et al. Experimental and numerical study on the behaviour of CFDST columns subjected to close-in blast loading [J]. Engineering Structures, 2019, 185(1): 203–220.
    [11] WANG R, HAN L H, ZHAO X L, et al. Analytical behavior of concrete filled double steel tubular (CFDST) members under lateral impact [J]. Thin-Walled Structures, 2016, 101(1): 129–140.
    [12] WANG R, HAN L H, HOU C C. Behavior of concrete filled steel tubular (CFST) members under lateral impact: experiment and FEA model [J]. Journal of Constructional Steel Research, 2013, 80: 188–201. doi: 10.1016/j.jcsr.2012.09.003
    [13] MAO L, BARNETT S, BEGG D, et al. Numerical simulation of ultra high performance fibre reinforced concrete panel subjected to blast loading [J]. International Journal of Impact Engineering, 2014, 64: 91–100. doi: 10.1016/j.ijimpeng.2013.10.003
    [14] ISAACS J, MAGALLANES J, REBENTROST M, et al. Exploratory dynamic material characterizing tests on ultra-high performance fibre reinforced concrete [C]//Proceedings of 8th International Conference on Shock and Impact Loads on Structures. Adelaide, Australia, 2009, 1(4): 337–344.
    [15] JAYASOORIYA R, THAMBIRATNAM D P, PERERA N J. Blast response and safety evaluation of a composite column for use as key element in structural systems [J]. Engineering Structures, 2014, 61: 31–43. doi: 10.1016/j.engstruct.2014.01.007
    [16] WU K C, LI B, TSAI K C. The effects of explosive mass ratio on residual compressive capacity of contact blast damaged composite columns [J]. Journal of Constructional Steel Research, 2011, 67(4): 602–612. doi: 10.1016/j.jcsr.2010.12.001
    [17] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873.
    [18] MALVAR L J, CRAWFORD J E, MORRILL K B, et al. K&C concrete material model release Ⅲ: automated generation of material model input: TR-99-24 -B1 [R]. K&C Technical Report, 2009: 154–163.
    [19] WANG F W Y, CHONG Q Y K, LIM C H. Reinforced concrete slab subjected to close-in explosion [C]//The Second International Workshop on Performance Procection and Strengthening of Structure under Extreme Loading, 2009: 43–48.
  • 加载中
图(20) / 表(7)
计量
  • 文章访问数:  7491
  • HTML全文浏览量:  3392
  • PDF下载量:  39
出版历程
  • 收稿日期:  2020-04-09
  • 修回日期:  2020-05-26
  • 发布日期:  2020-06-25

目录

    /

    返回文章
    返回