金属丝网对甲烷/空气爆燃火焰传播特性的影响

孙玮康 陈先锋 冯梦梦 黄楚原 刘静 赵齐 智雪珂

孙玮康, 陈先锋, 冯梦梦, 黄楚原, 刘静, 赵齐, 智雪珂. 金属丝网对甲烷/空气爆燃火焰传播特性的影响[J]. 高压物理学报, 2020, 34(5): 055201. doi: 10.11858/gywlxb.20200536
引用本文: 孙玮康, 陈先锋, 冯梦梦, 黄楚原, 刘静, 赵齐, 智雪珂. 金属丝网对甲烷/空气爆燃火焰传播特性的影响[J]. 高压物理学报, 2020, 34(5): 055201. doi: 10.11858/gywlxb.20200536
SUN Weikang, CHEN Xianfeng, FENG Mengmeng, HUANG Chuyuan, LIU Jing, ZHAO Qi, ZHI Xueke. Effect of the Wire Mesh Structure on the Flame Characteristics of Methane/Air Deflagration[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 055201. doi: 10.11858/gywlxb.20200536
Citation: SUN Weikang, CHEN Xianfeng, FENG Mengmeng, HUANG Chuyuan, LIU Jing, ZHAO Qi, ZHI Xueke. Effect of the Wire Mesh Structure on the Flame Characteristics of Methane/Air Deflagration[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 055201. doi: 10.11858/gywlxb.20200536

金属丝网对甲烷/空气爆燃火焰传播特性的影响

doi: 10.11858/gywlxb.20200536
基金项目: 国家自然科学基金(51774221);中央高校基本科研业务费专项资金(205261002)
详细信息
    作者简介:

    孙玮康 (1996—),男,硕士研究生,主要从事防火防爆技术研究.E-mail:sunweikang@whut.edu.cn

    通讯作者:

    陈先锋(1975—),男,博士,教授,主要从事工业爆炸安全(机理、风险管控)研究.E-mail:cxf618@whut.edu.cn

  • 中图分类号: O382; X932

Effect of the Wire Mesh Structure on the Flame Characteristics of Methane/Air Deflagration

  • 摘要: 在自主设计的方形管道中开展了金属丝网对甲烷/空气预混气体爆燃火焰传播特性影响的实验,通过改变金属丝网的目数和层数,探讨其对爆燃火焰超压和温度的影响。结果表明:金属丝网能有效抑制爆燃火焰的超压与温度,安装金属丝网后,管道内测得的超压峰值与温度峰值相较于无金属丝网均出现降低,温度峰值衰减率最高达到52.37%,超压峰值衰减率最高达到66.84%;金属丝网的目数和层数是影响金属丝网对超压抑制效果的重要因素,层数与目数较小时,达到超压峰值的时间相较于无金属丝网时提前,层数与目数适中时,超压曲线出现二次峰值现象,层数与目数较大时,超压能得到有效抑制;随着目数与层数的增加,火焰热量向前扩散速度变慢,温度曲线起始时间相较于无金属丝网时延后。

     

  • 图  实验系统结构示意图

    Figure  1.  Schematic of experimental system

    图  金属丝网实物

    Figure  2.  Picture of wire mesh

    图  不同目数时管道内温度-时间变化曲线

    Figure  3.  Temperature-time curves with different mesh numbers

    图  温度峰值衰减率-目数拟合曲线

    Figure  4.  Fitted curves of the relationship between peak temperature decay rate and mesh number

    图  不同层数时管道内温度-时间变化曲线

    Figure  5.  Temperature history curves with different layer numbers

    图  温度峰值衰减率-层数变化关系拟合曲线

    Figure  6.  Fitted curves of the relationship between peak temperature decay rate and layer number

    图  不同目数时管道内超压-时间变化曲线

    Figure  7.  Overpressure history curves with different mesh numbers

    图  超压峰值衰减率-目数变化拟合曲线

    Figure  8.  Fitted curves of the relationship between peak overpressure decay rate and mesh number

    图  不同层数时管道内超压-时间变化曲线

    Figure  9.  Overpressure history curves with different layer numbers

    图  10  超压峰值衰减率-层数变化拟合曲线

    Figure  10.  Fitted curves of the relationship between peak overpressure decay rate and layer number

    表  1  金属丝网结构参数

    Table  1.   Mesh structure parameters

    Wire meshHoles per cmAperture/cmWire diameter/mmMetal area fraction/%Metal volume fraction/%
    103.9372.1100.4500.723 20.272 5
    207.8740.9500.3150.565 60.389 6
    3011.811 0.6100.2340.524 00.434 1
    下载: 导出CSV
  • [1] 西南石油大学. 中国天然气行业景气指数持续发布 [J]. 天然气工业, 2018, 38(4): 11.
    [2] 天工. “十三五”天然气将成为我国能源转型的重要抓手 [J]. 天然气工业, 2017, 37(4): 149.

    TIAN G. “13th Five-Year Plan” natural gas will become an important driver of China’s energy transition [J]. Natural Gas Industry, 2017, 37(4): 149.
    [3] JIN K Q, DUAN Q L, CHEN J Y, et al. Experimental study on the influence of multilayer wire mesh on dynamics of premixed hydrogen-air flame propagation in a closed duct [J]. International Journal of Hydrogen Energy, 2017, 42: 14809–14820.
    [4] CUI Y Y, WANG Z R, ZHOU K B, et al. Effect of wire mesh on double suppression of CH4/air mixture explosions in a spherical vessel connected to pipelines [J]. Journal of Loss Prevention in the Process Industries, 2017, 45: 6977.
    [5] SUN J H, ZHAO Y, WEI C R, et al. The comparative experimental study of the porous materials suppressing the gas explosion [J]. Procedia Engineering, 2011, 26: 954960.
    [6] 王振成, 小川辉繁. 金属网阻火器设计参数的优化选择 [J]. 中国安全科学学报, 1995(Suppl 2): 176–182.

    WANG Z C, XIAOCHUAN H F. Optimization selection of design parameters of metal mesh flame arrester [J]. Chinese Journal of Safety Science, 1995(Suppl 2): 176–182.
    [7] 陈鹏, 杨永波, 郭实龙, 等. 金属丝网对甲烷/空气预混火焰传播影响的研究 [J]. 中国安全科学学报, 2014, 24(7): 33–36.

    CHEN P, YANG Y B, GUO S L, et al. Effect of metal mesh on methane/air premixed flame propagation [J]. Chinese Journal of Safety Science, 2014, 24(7): 33–36.
    [8] 喻健良, 蔡涛, 李岳,等. 丝网结构对爆炸气体淬熄的试验研究 [J]. 燃烧科学与技术, 2008(2): 97–100. doi: 10.3321/j.issn:1006-8740.2008.02.001

    YU J L, CAI T, LI Y, et al. Experimental study on quenching of explosive gas by wire mesh structure [J]. Combustion Science and Technology, 2008(2): 97–100. doi: 10.3321/j.issn:1006-8740.2008.02.001
    [9] 张巨峰, 武元, 杨运尧,等. 管道内多层金属丝网对预混可燃气体爆炸火焰传播的影响 [J]. 山西大同大学学报 (自然科学版), 2012, 28(1): 66–70.

    ZHANG J F, WU Y, YANG Y Y, et al. Influence of multilayer metal wire mesh in pipeline on the flame propagation of premixed combustible gas explosion [J]. Journal of Shanxi Datong University (Natural Science Edition), 2012, 28(1): 66–70.
    [10] 程方明, 常助川, 史合,等. 金属丝网对甲烷/空气预混火焰管道内传播的影响 [J]. 中国安全生产科学技术, 2020, 16(1): 135–140.

    CHENG F M, CHANG Z C, SHI H, et al. Impact of metal wire mesh on methane/air premixed flame pipeline propagation [J]. China Safety Science and Technology, 2020, 16(1): 135–140.
    [11] YANG Y, HE X Q, LUO G, et al. Effect of meshy obstacle on methane gas explosion [J]. Procedia Engineering, 2011, 26: 70–74.
    [12] 顾涛, 王凯全, 疏小勇, 等. 金属丝网对火焰波阻隔效应研究 [J]. 消防科学与技术, 2014, 33(1): 14–17. doi: 10.3969/j.issn.1009-0029.2014.01.005

    GU T, WANG K Q, SHU X Y, et al. Research on the effect of metal wire mesh on flame wave blocking [J]. Fire Science and Technology, 2014, 33(1): 14–17. doi: 10.3969/j.issn.1009-0029.2014.01.005
    [13] 孙建华, 赵益, 魏春荣, 等. 金属丝网和泡沫陶瓷组合体抑制瓦斯爆炸的实验研究 [J]. 煤炭学报, 2012, 37(7): 1156–1160.

    SUN J H, ZHAO Y, WEI C R, et al. Experimental study on the suppression of gas explosion by the combination of metal wire mesh and foam ceramics [J]. Chinese Journal of Coal, 2012, 37(7): 1156–1160.
    [14] 魏春荣. 多孔材料对瓦斯爆炸抑制作用研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013.

    WEI C R. Research on inhibition of gas explosion by porous materials [D]. Harbin: Harbin Institute of Technology, 2013.
    [15] CHEN P, HUANG F G, SUN Y D, et al. Effects of metal foam meshes on premixed methane-air flame propagation in the closed duct [J]. Journal of Loss Prevention in the Process Industries, 2017, 47: 2228.
    [16] 吴征艳, 蒋曙光, 王兰云, 等. 多层丝网结构抑制瓦斯爆炸传播的数学模型 [J]. 工业安全与环保, 2006(12): 1–3. doi: 10.3969/j.issn.1001-425X.2006.12.001

    WU Z Y, JIANG S G, WANG L Y, et al. Mathematical model of multilayer wire mesh structure to suppress gas explosion propagation [J]. Industrial Safety and Environmental Protection, 2006(12): 1–3. doi: 10.3969/j.issn.1001-425X.2006.12.001
    [17] CICCARELLI G, JOHANSEN C, PARRAVANI M. Transition in the propagation mechanism during flame acceleration in porous media [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2273–2278.
    [18] 余明高, 袁晨樵, 郑凯. 管道内障碍物对加氢甲烷爆炸特性的影响 [J]. 化工学报, 2016, 67(12): 5311–5319.

    YU M G, YUAN C Q, ZHENG K. The influence of obstacles in pipelines on the explosion characteristics of hydrogenated methane [J]. Journal of Chemical Industry and Engineering, 2016, 67(12): 5311–5319.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  6524
  • HTML全文浏览量:  2552
  • PDF下载量:  28
出版历程
  • 收稿日期:  2020-04-03
  • 修回日期:  2020-05-07

目录

    /

    返回文章
    返回