太帕压力下声速连续测量的高精度靶制备

张红平 张黎 罗斌强 李建明 王峰 谭福利 李牧

张红平, 张黎, 罗斌强, 李建明, 王峰, 谭福利, 李牧. 太帕压力下声速连续测量的高精度靶制备[J]. 高压物理学报, 2020, 34(3): 033401. doi: 10.11858/gywlxb.20200524
引用本文: 张红平, 张黎, 罗斌强, 李建明, 王峰, 谭福利, 李牧. 太帕压力下声速连续测量的高精度靶制备[J]. 高压物理学报, 2020, 34(3): 033401. doi: 10.11858/gywlxb.20200524
ZHANG Hongping, ZHANG Li, LUO Binqiang, LI Jianming, WANG Feng, TAN Fuli, LI Mu. High Precision Targets Fabrication for Sound Velocity Measurements in Terapascal Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033401. doi: 10.11858/gywlxb.20200524
Citation: ZHANG Hongping, ZHANG Li, LUO Binqiang, LI Jianming, WANG Feng, TAN Fuli, LI Mu. High Precision Targets Fabrication for Sound Velocity Measurements in Terapascal Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033401. doi: 10.11858/gywlxb.20200524

太帕压力下声速连续测量的高精度靶制备

doi: 10.11858/gywlxb.20200524
基金项目: 国家自然科学基金(11972330, 11974321, 11772310, 11472255);国防基础科研科学挑战专题(TZ2016001)
详细信息
    作者简介:

    张红平(1981-),女,博士,副教授,主要从事冲击动力学及材料物性研究. E-mail:zhp0506@163.com

    通讯作者:

    李 牧(1979-),男,博士,教授,主要从事高功率激光加载技术和极端条件下的物理研究.E-mail:limu@sztu.edu.cn

  • 中图分类号: O521.3

High Precision Targets Fabrication for Sound Velocity Measurements in Terapascal Pressure

  • 摘要: 声速反映小应力扰动在介质中的传播特征,是材料在一定热力学状态下的重要属性,是研究材料状态方程、相变(包括固-固相变)以及物质构成等的重要手段。超高压声速测量对于地球和行星物理、惯性约束聚变以及第一性原理的建模等多个物理研究领域具有重要意义。基于侧向稀疏方法连续测量冲击绝热线上的体声速是获取超高压声速的全新方法。该方法对靶的制备要求很高。为此,详细介绍了基于该方法的靶的制备要求,探讨了制备工艺、测量技术以及影响实验精度的主要因素,并根据“神光Ⅲ”原型装置的实验结果进行相应的分析。

     

  • 图  多层聚苯乙烯压片侧面抛光(a)及单片测量结果(b)

    Figure  1.  Side view of polished multiple (a) and single (b) polystyrene sample

    图  “神光Ⅲ”原型上使用的侧向稀疏靶装配示意图

    Figure  2.  Illustrations of assembled lateral-release target or SGⅢ prototype laser experiments

    图  单次实验靶使用两块样品的装配实物、测量区域与条纹相机静态图像

    Figure  3.  Scanned area of a target with two samples for one shot and calibration result on streak camera

    图  基板与透明样品之间存在间隙时的典型VISAR信号

    Figure  4.  VISAR data with a gap between pusher and transparent sample

    图  聚苯乙烯超高压冲击加载侧向稀疏测量的实验结果

    Figure  5.  Experimental results of lateral-release of shocked polystyrene

    表  1  基于“神光Ⅲ”原型装置的驱动方式和靶参数对致盲及预热的影响

    Table  1.   Effects of drive modes and target parameters on sample preheating and reflection of probe beam in SG prototype laser experiments

    Drive
    mode
    Laser injectAblator/pusherSampleFlatness of shockPreheating and blindness
    Indirect
    drive
    $\varnothing$2.0 mm × 1.7 mm
    gold hohlraum, one
    end, 8 beams of laser,
    3ω, 4.8 kJ
    40 μm AlPolystyreneExcellentVery serious at both blindness and preheating, > 1 500 ℃
    15 μm Al (ablator) +
    10 μm Au + 15 μm Al
    PolystyreneAcceptableNo blindness, no observable preheating
    Indirect
    drive
    $\varnothing$1.5 mm × 1.4 mm
    gold hohlraum, one
    end, 8 beams of laser,
    3ω, 2.8 kJ
    15 μm Al (ablator) +
    10 μm Au + 15 μm Al
    PolystyreneHigh uniformity at incident, follows with chaosObservable blindness, no observable preheating
    15 μm Al (ablator) +
    10 μm Au + 15 μm Al
    $ \alpha $-quartzHigh uniformity at incident, follows with chaosNo blindness, no observable preheating
    Direct
    drive
    Overlap of 4 beams of laser with $\varnothing$2 mm CPP, incidence angle 45°,
    3ω, 2–3 kJ
    25 μm PI + 40 μm AlPolystyreneAcceptableSlightly dim VISAR, no observable preheating
    25 μm PI + 40 μm Al$ \alpha $-quartzAcceptableUnobservable
    25 μm PI + 70 μm AlPolystyreneAcceptableUnobservable
    25 μm PI + 12 μm Cu +
    40 μm Al
    PolystyreneAcceptableUnobservable
    下载: 导出CSV
  • [1] FORBES J W. Shock wave compression of condensed matter [M]//PRIMER A. Shock Wave and High Pressure Phenomena. Berlin: Springer Berlin Heidelberg, 2012.
    [2] DUFFY T, MADHUSUDHAN N, LEE K KM. Mineralogy of super earth planets [M]//Treatise on Geophysics. Elsevier, 2015: 149–178.
    [3] DUFFY T S, AHRENS T J. Sound velocities at high pressure and temperature and their geophysical implications [J]. Journal of Geophysical Research Atmospheres, 1992, 97(B4): 4503–4520. doi: 10.1029/91JB02650
    [4] DUFFY T S, VOS W L, ZHA C, et al. Sound velocities in dense hydrogen and the interior of Jupiter [J]. Science, 1994, 263(5153): 1590–1593. doi: 10.1126/science.263.5153.1590
    [5] HU J B, ZHOU X M, DAI C D, et al. Shock inducedbct bcc transition and melting of tin identified by sound velocity measurements [J]. Journal of Applied Physics, 2008, 104(8): 083520. doi: 10.1063/1.3003325
    [6] NISSIM N, ELIEZER S, WERDIGER M. The sound velocity throughout the P-ρ phase space with application to laser induced shock wave in matter precompressed by a diamond anvil cell [J]. Journal of Applied Physics, 2014, 115(21): 213503. doi: 10.1063/1.4879855
    [7] OHTANI E, MIBE K, SAKAMAKI T, et al. Sound velocity measurement by inelastic X ray scattering at high pressure and temperature by resistive heating diamond anvil cell [J]. Russian Geology and Geophysics, 2015, 56(1/2): 190–195.
    [8] MCCOY C A, KNUDSON M D, ROOT S. Absolute measurement of the Hugoniot and sound velocity of liquid copper at multimegabar pressures [J]. Physical Review B, 2017, 96(17): 174109. doi: 10.1103/PhysRevB.96.174109
    [9] LI M, ZHANG S, ZHANG H P, et al. Continuous sound velocity measurements along the shock Hugoniot curve of quartz [J]. Physical Review Letters, 2018, 120(21): 215703. doi: 10.1103/PhysRevLett.120.215703
    [10] BRADLEY D K, EGGERT J H, HICKS D G, et al. Shock compressing diamond to a conducting fluid [J]. Physical Review Letters, 2004, 93(19): 195506. doi: 10.1103/PhysRevLett.93.195506
    [11] MCCOY C A, GREGOR M C, POLSIN D N, et al. Measurements of the sound velocity of shockcompressed liquid silica to 1100 GPa [J]. Journal of Applied Physics, 2016, 120(23): 235901. doi: 10.1063/1.4972338
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  7083
  • HTML全文浏览量:  2964
  • PDF下载量:  26
出版历程
  • 收稿日期:  2020-03-06
  • 修回日期:  2020-04-13

目录

    /

    返回文章
    返回