Re-H2O体系高温高压化学反应的拉曼证据

赵慧芳 谭大勇 姜峰 谢亚飞 姜昌国 罗兴丽 肖万生

赵慧芳, 谭大勇, 姜峰, 谢亚飞, 姜昌国, 罗兴丽, 肖万生. Re-H2O体系高温高压化学反应的拉曼证据[J]. 高压物理学报, 2020, 34(4): 040102. doi: 10.11858/gywlxb.20200518
引用本文: 赵慧芳, 谭大勇, 姜峰, 谢亚飞, 姜昌国, 罗兴丽, 肖万生. Re-H2O体系高温高压化学反应的拉曼证据[J]. 高压物理学报, 2020, 34(4): 040102. doi: 10.11858/gywlxb.20200518
ZHAO Huifang, TAN Dayong, JIANG Feng, XIE Yafei, JIANG Changguo, LUO Xingli, XIAO Wansheng. Raman Evidences of Chemical Reaction of Re-H2O System at High Pressure and High Temperature[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 040102. doi: 10.11858/gywlxb.20200518
Citation: ZHAO Huifang, TAN Dayong, JIANG Feng, XIE Yafei, JIANG Changguo, LUO Xingli, XIAO Wansheng. Raman Evidences of Chemical Reaction of Re-H2O System at High Pressure and High Temperature[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 040102. doi: 10.11858/gywlxb.20200518

Re-H2O体系高温高压化学反应的拉曼证据

doi: 10.11858/gywlxb.20200518
基金项目: 国家自然科学基金(41372047,41572030);中国科学院战略性先导科技专项B类(XDB18000000)
详细信息
    作者简介:

    赵慧芳(1993-),女,博士研究生,主要从事高压矿物学研究. E-mail:zhaohuifang@gig.ac.cn

    通讯作者:

    谭大勇(1975-),男,博士,副研究员,主要从事高压矿物学研究. E-mail:dytan04@gig.ac.cn

  • 中图分类号: O521.2

Raman Evidences of Chemical Reaction of Re-H2O System at High Pressure and High Temperature

  • 摘要: 铼片是金刚石对顶砧超高压装置实验中常用的封垫材料,深部水是地球深部物质循环与能量交换的纽带,Re-H2O体系高温高压化学反应研究具有重要的科学和技术意义。比较高温高压与常温常压条件的显微观察和拉曼测试结果表明:Re-H2O体系在高压、高温环境(如40.5 GPa,(1 800 ± 200) K)发生氧化还原反应(${2{{\rm{H}}_2}{\rm{O}} + {\rm{Re}}\;\;\;\begin{matrix}{40.5\;{\rm{GPa}}} \\\hline \hline{1\;800\;{\rm{K}}}\\\end{matrix}\;\;\;{\rm{Re}}{{\rm{O}}_2} + 4{\rm{H}}}$)生成4价态的铼氧化物(β-ReO2)和零价态的氢(H)。氧化产物β-ReO2的14个特征拉曼峰随着压力卸载向低波数方向连续不等性移动,未观察到还原产物氢原子在高压下与水分子、金属铼及其反应产物β-ReO2和H发生明显相互作用,直到压力卸载至常压时,氢原子发生聚合生成氢分子。Re-H2O体系高温高压化学反应揭示了地球深部的温度、压力以及还原性物质环境中水(羟基)裂解为氢原子,该发现为地幔和核幔边界的深部水裂解反应提供了新的实验证据,为探讨地球深部水的可能地球化学行为提供了重要依据。

     

  • 图  常温常压和常温高压下Re-H2O体系的代表性拉曼光谱

    Figure  1.  Representative Raman spectra of Re-H2O system at ambient and high pressure and room temperature

    图  常温常压和常温高压下黑色样品中心β-ReO2的代表性拉曼光谱

    Figure  2.  Representative Raman spectra of β-ReO2 locating in the center of the black sample at ambient and high pressure and room temperature

    图  加压(黑色曲线)和卸压(红色曲线)过程100~1 000 cm−1范围黑色样品边缘水的代表性拉曼光谱

    Figure  3.  Representative Raman spectra of water locating on the edge of black sample in the range of 100−1 000 cm−1 under loading (black curves) and unloading (red curves)

    图  加压(黑色曲线)和卸压(红色曲线)过程2 000~4 500 cm−1范围黑色样品边缘水的代表性拉曼光谱(星形标注峰为金刚石特征拉曼峰,插图为卸压(红色外框)和加压过程腔体的显微图像)

    Figure  4.  Representative Raman spectra of water locating on the edge of black sample in the range of 2 000−4 500 cm−1 under loading (black curves) and unloading (red curves) (Characteristic Raman peaks of diamond are marked with the stars, and the microscopic images of loading and unloading (with red borders) were inserted.)

    图  常压和高压下H2-H2O混合物的代表性拉曼光谱

    Figure  5.  Representative Raman spectra of H2-H2O mixtures at atmospheric pressure and high pressure

    表  1  β-ReO2的拉曼频率及其与压力的关系

    Table  1.   Raman frequencies and their pressure dependence dω/dP of the β-ReO2

    No.ω/cm−1(dω/dp)/(cm−1·GPa−1)
    0.1 MPa10.5 GPa20.2 GPa30.7 GPa40.8 GPa
    11661771821891940.7
    21701811901992010.8
    31992142232312370.9
    42402492552612650.6
    52873153423613722.2
    63593723853904011.1
    73733884044164241.3
    84374544704824881.3
    95135485785966072.4
    105615862.6
    115776026256406501.8
    126887478078418694.4
    137227848508919174.9
    147518098649049294.4
    下载: 导出CSV
  • [1] MARTIN R F, DONNAY G. Hydroxyl in the mantle [J]. American Mineralogist, 1972, 57(3/4): 554570.
    [2] HIRSCHMANN M M. Water, melting, and the deep Earth H2O cycle [J]. Annual Review of Earth and Planetary Sciences, 2006, 34: 629–653. doi: 10.1146/annurev.earth.34.031405.125211
    [3] GREEN D H, HIBBERSON W O, KOVÁCS I, et al. Water and its influence on the lithosphere–asthenosphere boundary [J]. Nature, 2010, 467(7314): 448–451. doi: 10.1038/nature09369
    [4] HIRSCHMANN M M, AUBAUD C, WITHERS A C. Storage capacity of H2O in nominally anhydrous minerals in the upper mantle [J]. Earth and Planetary Science Letters, 2005, 236(1/2): 167–181. doi: 10.1016/j.jpgl.2005.04.022
    [5] OHTANI E. Water in the mantle [J]. Elements, 2005, 1(1): 25–30. doi: 10.2113/gselements.1.1.25
    [6] OHTANI E. The role of water in Earth's mantle [J]. National Science Review, 2020, 7(1): 224–232. doi: 10.1093/nsr/nwz071
    [7] 夏群科, 杨晓志, 郝艳涛, 等. 深部地球中水的分布和循环 [J]. 地学前缘, 2007, 14(2): 10–23. doi: 10.3321/j.issn:1005-2321.2007.02.002

    XIA Q K, YANG X Z, HAO Y T, et al. Water: distribution and circulation in the deep Earth [J]. Earth Science Frontiers, 2007, 14(2): 10–23. doi: 10.3321/j.issn:1005-2321.2007.02.002
    [8] YANG X, KEPPLER H, LI Y. Molecular hydrogen in mantle minerals [J]. Geochemical Perspectives Letters, 2016, 2(2): 160–168. doi: 10.7185/geochemlet.1616
    [9] HU Q Y, KIM D Y, LIU J, et al. Dehydrogenation of goethite in Earth’s deep lower mantle [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(7): 1498–1501. doi: 10.1073/pnas.1620644114
    [10] HU Q Y, KIM D Y, YANG W G, et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen–hydrogen cycles [J]. Nature, 2016, 534(7606): 241–244. doi: 10.1038/nature18018
    [11] ZHANG L, YUAN H S, MENG Y, et al. Discovery of a hexagonal ultradense hydrous phase in (Fe, Al)OOH [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(12): 2908–2911. doi: 10.1073/pnas.1720510115
    [12] OHTANI E, HIRAO N, KONDO T, et al. Iron-water reaction at high pressure and temperature, and hydrogen transport into the core [J]. Physics and Chemistry of Minerals, 2005, 32(1): 77–82. doi: 10.1007/s00269-004-0443-6
    [13] VOHRA Y K, DUCLOS S J, RUOFF A L. High-pressure x-ray diffraction studies on rhenium up to 216 GPa (2.16 Mbar) [J]. Physical Review B, 1987, 36(18): 9790–9792. doi: 10.1103/PhysRevB.36.9790
    [14] BONDARENKO Y A, KABLOV E N, SUROVA V A, et al. Effect of high-gradient directed crystallization on the structure and properties of rhenium-bearing single-crystal alloy [J]. Metal Science and Heat Treatment, 2006, 48(7/8): 360–363. doi: 10.1007/s11041-006-0099-6
    [15] NAUMOV A V. Rhythms of rhenium [J]. Russian Journal of Non-Ferrous Metals, 2007, 48(6): 418–423. doi: 10.3103/S1067821207060089
    [16] SANTAMARÍA-PÉREZ D, MCGUIRE C, MAKHLUF A, et al. Exploring the chemical reactivity between carbon dioxide and three transition metals (Au, Pt, and Re) at high-pressure, high-temperature conditions [J]. Inorganic Chemistry, 2016, 55(20): 10793–10799. doi: 10.1021/acs.inorgchem.6b01858
    [17] CHELLAPPA R S, SOMAYAZULU M, HEMLEY R J. Rhenium reactivity in H2O-O2 supercritical mixtures at high pressures [J]. High Pressure Research, 2009, 29(4): 792–799. doi: 10.1080/08957950903286450
    [18] MAO H K, BELL P M, SHANER J W, et al. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar [J]. Journal of Applied Physics, 1978, 49(6): 3276–3283. doi: 10.1063/1.325277
    [19] GONCHAROV A F, GREGORYANZ E, STRUZHKIN V V, et al. Raman scattering of metals to very high pressures [EB/OL]. arXiv: cond-mat/0112404. (2001-12-20)[2020-03-01]. http://arxiv.org/abs/cond-mat/0112404.
    [20] PRUZAN P, CHERVIN J C, GAUTHIER M. Raman spectroscopy investigation of ice Ⅶ and deuterated ice Ⅶ to 40 GPa: disorder in ice Ⅶ [J]. EPL (Europhysics Letters), 1990, 13(1): 81–87. doi: 10.1209/0295-5075/13/1/014
    [21] WALRAFEN G E, ABEBE M, MAUER F A, et al. Raman and x-ray investigations of ice Ⅶ to 36.0 GPa [J]. The Journal of Chemical Physics, 1982, 77(4): 2166–2174. doi: 10.1063/1.444023
    [22] CAREY D M, KORENOWSKI G M. Measurement of the Raman spectrum of liquid water [J]. The Journal of Chemical Physics, 1998, 108(7): 2669–2675. doi: 10.1063/1.475659
    [23] DUNAEVA A N, ANTSYSHKIN D V, KUSKOV O L. Phase diagram of H2O: thermodynamic functions of the phase transitions of high-pressure ices [J]. Solar System Research, 2010, 44(3): 202–222. doi: 10.1134/S0038094610030044
    [24] HSIEH W P, CHIEN Y H. High pressure Raman spectroscopy of H2O-CH3OH mixtures [J]. Scientific Reports, 2015, 5(1): 8532. doi: 10.1038/srep08532
    [25] OTTO J W, VASSILIOU J K, PORTER R F, et al. Raman study of AgReO4 in the scheelite structure under pressure [J]. Physical Review B, 1991, 44(17): 9223–9227. doi: 10.1103/PhysRevB.44.9223
    [26] KLUG D D, SIM P G, BROWN R J C. Raman spectrum of NH4ReO4 at high pressure [J]. Journal of Raman Spectroscopy, 1982, 13(1): 53–55. doi: 10.1002/jrs.1250130110
    [27] MACHIDA S I, HIRAI H, KAWAMURA T, et al. Raman spectra for hydrogen hydrate under high pressure: intermolecular interactions in filled ice Ic structure [J]. Journal of Physics and Chemistry of Solids, 2010, 71(9): 1324–1328. doi: 10.1016/j.jpcs.2010.05.015
    [28] MACHIDA S, HIRAI H, KAWAMURA T, et al. Structural changes and intermolecular interactions of filled ice ic structure for hydrogen hydrate under high pressure [J]. Journal of Physics: Conference Series, 2010, 215(1): 012060. doi: 10.1088/1742-6596/215/1/012060
    [29] STOICHEFF B P. High resolution Raman spectroscopy of gases: IX. spectra of H2, HD, and D2 [J]. Canadian Journal of Physics, 1957, 35(6): 730–741. doi: 10.1139/p57-079
    [30] SHARMA S K, MAO H K, BELL P M. Raman measurements of hydrogen in the pressure range 0.2-630 kbar at room temperature [J]. Physical Review Letters, 1980, 44(13): 886–888. doi: 10.1103/PhysRevLett.44.886
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  8159
  • HTML全文浏览量:  2746
  • PDF下载量:  54
出版历程
  • 收稿日期:  2020-03-02
  • 修回日期:  2020-03-10

目录

    /

    返回文章
    返回