内爆驱动式超高速发射技术的初步研究

王马法 HIGGINSAndrew J 焦德志 黄洁 柳森

引用本文:
Citation:

内爆驱动式超高速发射技术的初步研究

    作者简介: 王马法(1986-),男,博士,助理研究员,主要从事超高速发射与毁伤技术研究.E-mail:fujianwmf@163.com;
    通讯作者: 柳森, hvi@cardc.cn
  • 中图分类号: O521.3

Preliminary Simulation and Experimental Study on Implosion-Driven Hypervelocity Launching Technology

    Corresponding author: LIU Sen, hvi@cardc.cn
  • CLC number: O521.3

  • 摘要: 为获得10 km/s左右的超高速发射能力,以内爆发射器为研究对象,利用AUTODYN 2D软件对口径为8 mm的内爆发射器进行有限元仿真分析,获得了典型状态下的弹丸发射速度。研制了口径为8 mm的内爆发射器,并在压缩管中填充5 MPa氦气进行实验,分别获得了0.55 g铝合金弹丸7.95 km/s和0.37 g镁合金弹丸10.28 km/s的发射速度,与有限元仿真计算结果的速度偏差分别为15.3%和3.7%。结果表明,设计的内爆发射器具备10 km/s发射能力,满足空间碎片撞击和防护研究的超高速发射需求。
  • 图 1  内爆式超高速发射器结构示意图[11]

    Figure 1.  Structural diagram of implosion-driven hypervelocity launcher[11]

    图 2  内爆式超高速发射器工作原理[11]

    Figure 2.  Working diagram of implosion launcher after ignition[11]

    图 3  8 mm口径内爆式发射装置工作过程

    Figure 3.  Launch process of 8 mm caliber implosion launcher

    图 4  不同充气压力下铝弹丸的速度-时间历史

    Figure 4.  Velocity-time history of aluminum projectiles with different filling pressure

    图 5  不同材料弹丸速度-时间历史

    Figure 5.  Velocity-time history of projectiles with different materials

    图 6  内爆式超高速发射器实物

    Figure 6.  Image of implosion-driven hypervelocity launcher

    图 7  实验装置布局示意图

    Figure 7.  Layout of experimental equipment

    图 8  ILT08实验发射器装置回收

    Figure 8.  Recycle launcher of test ILT08

    图 9  0.55 g铝合金弹丸速度测试结果

    Figure 9.  Experimental muzzle velocities of 0.55 g aluminum projectile

    图 10  0.37 g镁合金弹丸速度测试结果

    Figure 10.  Experimental muzzle velocities of 0.37 g magnesium projectile

    图 11  弹丸序列激光阴影成像结果

    Figure 11.  Projectile photos shot by sequence laser shadowgraph imager

    表 1  不同弹丸材料和充气压力下仿真计算参数

    Table 1.  Simulation parameters of launchers with different projectile materials and filling pressure

    No.Material of projectileFilling pressure/MPaDiameter of launch tube/mmDiameter of pump tube/mmMuzzle velocity/(km·s–1
    1Aluminum alloy4816 8.62
    2Aluminum alloy5816 9.17
    3Aluminum alloy6816 9.25
    4Magnesium alloy581610.66
    下载: 导出CSV

    表 2  内爆发射器实验相关参数

    Table 2.  Parameters of the implosion-driven launchers in tests

    No.Material of projectileMass of projectile/gFilling pressure/MPaDiameter of launch tube/mmDiameter of pump tube/mmMaximum velocity/(km·s–1
    ILT04Aluminum alloy0.555816 7.26
    ILT07 6.96
    ILT14 7.95
    ILT08Magnesium alloy0.375816 9.73
    ILT0910.28
    ILT11 9.36
    ILT12 9.77
    下载: 导出CSV
  • [1] HUNEAULT J, LOISEAU J, HIGGINS A J. Coupled lagrangian gasdynamic and structural hydrocode solvers for simulating an implosion-driven hypervelocity launcher [C]//51st AIAA Aerospace Science Meeting Including the New Horizons Forum and Aerospace Exposition. Grapevine, 2013: 1–21.
    [2] 王翔, 王青松, 彭建祥, 等. 三级炮超高速发射技术在空间碎片防护研究中的初步应用 [C]//第八届全国空间碎片学术交流会. 北京, 2015: 350–358.
    WANG X, WANG Q S, PENG J X, et al. Preliminary application of three-stage gas gun hypervelocity launcher techniques in space debris protection research [C]//8th National Symposium on Space Debris. Beijing, 2015: 350–358.
    [3] 张旭平, 谭福利, 王桂吉, 等. 基于CQ4的磁驱动10 km/s以上超高速飞片发射 [C]//第八届全国空间碎片学术交流会. 北京, 2015: 385–390.
    ZHANG X P, TAN F L, WANG G J, et al. Magnetically driven flyer plates to velocities above 10 km/s on CQ4 [C]//8th National Symposium on Space Debris. Beijing, 2015: 385–390.
    [4] 文尚刚, 赵锋, 王建, 等. 气炮加载下炸药强爆轰驱动技术的初步实验研究 [J]. 高压物理学报, 2011, 25(1): 36–40. doi: 10.11858/gywlxb.2011.01.006
    WEN S G, ZHAO F, WANG J, et al. Primary experimental study on driving technique of strong detonation using gas gun [J]. Chinese Journal of High Pressure Physics, 2011, 25(1): 36–40. doi: 10.11858/gywlxb.2011.01.006
    [5] 赵士操, 宋振飞, 姬广富, 等. 一种基于二级轻气炮平台的超高速弹丸发射装置设计 [J]. 高压物理学报, 2011, 25(6): 557–564. doi: 10.11858/gywlxb.2011.06.012
    ZHAO S C, SONG Z F, JI G F, et al. A novel design of a hypervelocity launcher based on two-stage gas gun facilities [J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 557–564. doi: 10.11858/gywlxb.2011.06.012
    [6] 邢柏阳, 刘荣忠, 郭锐, 等. 强爆轰驱动超高速碎片发射装置设计因素分析 [J]. 国防科技大学学报, 2018(4): 151–158.
    XING B Y, LIU R Z, GUO R, et al. Analysis on design factors of hypervelocity fragment launcher using strong detonation drive [J]. Journal of National University of Defense Technology, 2018(4): 151–158.
    [7] 林俊德, 张向荣, 朱玉荣, 等. 超高速撞击实验的三级压缩气炮技术 [J]. 爆炸与冲击, 2012, 32(5): 483–489. doi: 10.3969/j.issn.1001-1455.2012.05.006
    LIN J D, ZHANG X R, ZHU Y R, et al. The technique of three-stage compressed-gas gun for hypervelocity impact [J]. Explosion and Shock Waves, 2012, 32(5): 483–489. doi: 10.3969/j.issn.1001-1455.2012.05.006
    [8] 王青松, 王翔, 郝龙, 等. 三级炮超高速发射技术研究进展 [J]. 高压物理学报, 2014, 28(3): 340–345.
    WANG Q S, WANG X, HAO L, et al. Progress on hypervelocity launcher techniques using a three-stage gun [J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 340–345.
    [9] MOORE J E T. Explosive hypervelocity launchers: PIFR-051 [R]. Physics International Company, 1968.
    [10] WATSON J D. High-velocity explosively driven guns: CR-1533 [R]. Physics International Company, NASA, 1970.
    [11] LOISEAU J, HUNEAULT J, HIGGINS A J. Development of a linear implosion-driven hypervelocity launcher [J]. Procedia Engineering, 2013, 58: 77–87. doi: 10.1016/j.proeng.2013.05.011
    [12] HUNEAULT J, LOISEAU J, HILDEBRAND M, et al. Down-bore velocimetry of an explosively driven light-gas gun [J]. Procedia Engineering, 2015, 103: 230–236. doi: 10.1016/j.proeng.2015.04.031
    [13] HILDEBRAND M, HUNEAULT J, LOISEAU J, et al. Down-bore two-laser heterodyne velocimetry of an implosion-driven hypervelocity launcher [J]. AIP Conference Proceedings, 2017, 1793: 160009.
    [14] 田杨萌, 王莹. 炸药爆轰驱动高速击波管发射技术 [J]. 弹箭与制导学报, 2003, 23(3): 221–224.
    TIAN Y M, WANG Y. A propulsion technology of the fast shock tube driven by high explosive [J]. Journal of Projectiles Rockets Missiles and Guidance, 2003, 23(3): 221–224.
    [15] 北京工业学院八系. 爆炸及其作用(上册) [M]. 北京: 国防工业出版社, 1979: 214–219.
    No.8 Department of Beijing Industrial College. Explosion and its application [M]. Beijing: National Defense Industrial Press, 1979: 214–219.
  • [1] 王金贵 . 二级轻气炮超高速弹丸发射技术的研究. 高压物理学报, 1992, 6(4): 264-272 . doi: 10.11858/gywlxb.1992.04.004
    [2] 张黎李牧张永强贺佳沈欢欢陶彦辉谭福利赵剑衡 . 激光驱动单颗粒与气体混合的实验研究. 高压物理学报, 2017, 31(2): 187-192. doi: 10.11858/gywlxb.2017.02.012
    [3] 翟阳修吴昊方秦 . 一种长杆弹超高速贯穿陶瓷/金属复合靶板的简化模型. 高压物理学报, 2017, 31(6): 742-752. doi: 10.11858/gywlxb.2017.06.009
    [4] 文尚刚孙承纬赵锋李庆忠 . 多级爆轰驱动研究超高速碰撞的一种新的加载技术. 高压物理学报, 2000, 14(1): 22-27 . doi: 10.11858/gywlxb.2000.01.004
    [5] 王青松王翔郝龙戴诚达柏劲松谭华 . 三级炮超高速发射技术研究进展. 高压物理学报, 2014, 28(3): 339-345. doi: 10.11858/gywlxb.2014.03.012
    [6] 陈朗刘群鲁建英龚自正郭欣伟 . 渐变阻抗飞片超高速发射数值模拟. 高压物理学报, 2009, 23(3): 167-172 . doi: 10.11858/gywlxb.2009.03.002
    [7] 柏劲松华劲松沈强戴诚达李平谭华张联盟 . 超高速发射实验模型的数值计算. 高压物理学报, 2004, 18(2): 116-122 . doi: 10.11858/gywlxb.2004.02.004
    [8] 林绍明徐南仙陈栋泉 . 超高速发射装置的数值模拟. 高压物理学报, 2000, 14(2): 139-145 . doi: 10.11858/gywlxb.2000.02.010
    [9] 王金贵 . 超高速碰撞的弹托分离技术. 高压物理学报, 1993, 7(2): 143-147 . doi: 10.11858/gywlxb.1993.02.011
    [10] 王宇柏劲松王翔谭华李平 . 汇聚型超高速发射装置的发射腔计算设计. 高压物理学报, 2016, 30(3): 235-241. doi: 10.11858/gywlxb.2016.03.009
    [11] 刘尔岩袁仙春廖振民 . 炸药爆轰驱动超高速击波管的数值摸拟. 高压物理学报, 1996, 10(3): 231-235 . doi: 10.11858/gywlxb.1996.03.011
    [12] 柏劲松唐蜜华劲松李平谭华 . 一种超高速发射实验装置的改进及其数值模拟. 高压物理学报, 2007, 21(3): 253-258 . doi: 10.11858/gywlxb.2007.03.006
    [13] 庞宝君张凯林敏刘源 . 碎片云超高速撞击声发射信号特征分析. 高压物理学报, 2014, 28(6): 664-670. doi: 10.11858/gywlxb.2014.06.004
    [14] 王宇柏劲松王翔谭华李平 . 汇聚型超高速发射装置一级飞片的计算设计. 高压物理学报, 2015, 29(2): 155-160. doi: 10.11858/gywlxb.2015.02.011
    [15] 赵新才张崇玉李剑刘宁文肖正飞 . 爆轰驱动下对碰区早期凸起行为的超高速光电摄影实验研究. 高压物理学报, 2016, 30(6): 505-510. doi: 10.11858/gywlxb.2016.06.011
    [16] 文尚刚赵锋孙承纬邓文荣张振涛庞勇黄文斌张小琳 . 低真空条件下炸药强爆轰驱动超高速飞片实验研究. 高压物理学报, 2004, 18(4): 315-318 . doi: 10.11858/gywlxb.2004.04.005
    [17] 孙欢腾李名锐周刚马坤舒孝鸿 . 杆式钨合金弹超高速撞击薄靶的能量损耗. 高压物理学报, 2019, 33(6): 064106-1-064106-9. doi: 10.11858/gywlxb.20190732
    [18] 柏劲松沈强唐蜜胡建波罗国强谭华张联盟 . 超高速发射中缓冲层材料对钽飞片速度影响的数值分析. 高压物理学报, 2008, 22(1): 19-24 . doi: 10.11858/gywlxb.2008.01.005
    [19] 赵士操宋振飞姬广富龚自正赵晓平 . 一种基于二级轻气炮平台的超高速弹丸发射装置设计. 高压物理学报, 2011, 25(6): 557-564. doi: 10.11858/gywlxb.2011.06.012
    [20] 赵新才李剑肖正飞刘宁文 . 爆轰加载下柱壳膨胀断裂的超高速光电摄影实验研究. 高压物理学报, 2016, 30(2): 89-93. doi: 10.11858/gywlxb.2016.02.001
  • 加载中
图(11)表(2)
计量
  • 文章访问数:  1371
  • 阅读全文浏览量:  473
  • PDF下载量:  9
出版历程
  • 收稿日期:  2019-12-23
  • 录用日期:  2020-01-20
  • 刊出日期:  2020-06-01

内爆驱动式超高速发射技术的初步研究

    作者简介:王马法(1986-),男,博士,助理研究员,主要从事超高速发射与毁伤技术研究.E-mail:fujianwmf@163.com
    通讯作者: 柳森, hvi@cardc.cn
  • 1. 中国空气动力研究与发展中心,四川 绵阳 621000
  • 2. 麦吉尔大学工程力学系,魁北克 蒙特利尔 H3A2K6,加拿大

摘要: 为获得10 km/s左右的超高速发射能力,以内爆发射器为研究对象,利用AUTODYN 2D软件对口径为8 mm的内爆发射器进行有限元仿真分析,获得了典型状态下的弹丸发射速度。研制了口径为8 mm的内爆发射器,并在压缩管中填充5 MPa氦气进行实验,分别获得了0.55 g铝合金弹丸7.95 km/s和0.37 g镁合金弹丸10.28 km/s的发射速度,与有限元仿真计算结果的速度偏差分别为15.3%和3.7%。结果表明,设计的内爆发射器具备10 km/s发射能力,满足空间碎片撞击和防护研究的超高速发射需求。

English Abstract

  • 随着空间科学研究的发展,为进一步开展空间碎片毁伤效应、防护结构以及超高速碰撞等研究工作,提出了10 km/s以上的超高速发射需求。国内外常用的发射技术(设备)包括:二级/三级轻气炮、磁驱动飞片、聚能射流、等离子体加速器、激光驱动飞片装置等[1-6]。其中二级轻气炮是目前应用最广泛、技术最为成熟的发射设备。然而,受到炮体材料性能的限制,二级轻气炮的稳定发射速度基本都低于8 km/s,如果超过该速度,发射管将发生严重的烧蚀破坏[7]。虽然有些发射技术能够实现8 km/s以上的超高速发射,但是这些发射技术要么难以控制弹丸的质量和形状,要么只能发射很薄的飞片状弹丸或质量很小的弹丸[8],因此将其应用到超高速碰撞实验研究中受到了一定的限制。在20世纪60年代,内爆驱动式超高速发射技术已经实现了2 g弹丸12.2 km/s的发射速度[9-10];进入21世纪后,加拿大麦吉尔大学[1, 11-13]又实现了15 g弹丸7.5 km/s左右的发射速度,这是一项发射质量和速度都超过二级轻气炮的超高速发射技术,能够满足空间碎片撞击的研究需求。

    内爆驱动式超高速发射技术(国外有Explosive hypervelocity launcher[9]、Explosively driven gun[10]、Implosion-driven launcher[11-13]等不同说法,国内也有炸药爆轰驱动高速激波管发射技术[14]、炸药驱动枪[15]等不同名称,本文以Implosion-driven launcher说法为准,简称内爆发射器)是一种利用炸药爆炸线性挤压压缩管内轻质气体,通过被压缩的轻质气体驱动弹丸的一种发射技术[11],作用过程与二级轻气炮中活塞压缩高压轻质气体类似,不同的是其活塞速度为炸药爆速。国内一些文献中对该技术进行了相关介绍,但尚未见相关实验和仿真研究报道[14-15]

    为了掌握内爆发射技术,获得10 km/s以上的发射能力,通过与加拿大麦吉尔大学的Higgins教授合作,以8 mm口径内爆发射装置为研究对象,对内爆发射器的发射能力和研究方法进行了初步探索,开展了内爆发射器内弹道分析和结构设计,并利用AUTODYN软件对设计结构进行了初步仿真分析,最终针对典型状态开展了初步验证实验。

    • 内爆发射器主要由炸药线性压缩段、高压段和发射管组成,其中炸药线性压缩段包括外壳、装药、压缩管、驱动气体等,发射器的结构如图1所示,作用过程如图2所示。左端炸药起爆后,压缩管向内塌缩,形成锥形结构,当炸药爆轰波传播时,锥形结构向右运动并压缩驱动气体。该过程与二级轻气炮中活塞压缩高压轻质气体类似,因此该锥形结构可看成虚拟活塞,当冲击波到达弹丸底部时,高压驱动气体开始推动弹丸加速运动。

      图  1  内爆式超高速发射器结构示意图[11]

      Figure 1.  Structural diagram of implosion-driven hypervelocity launcher[11]

      图  2  内爆式超高速发射器工作原理[11]

      Figure 2.  Working diagram of implosion launcher after ignition[11]

    • 设计了内径16 mm、长度500 mm的压缩管和内径8 mm、长度300 mm的发射管组成的内爆发射器,高压段采用锥段连接压缩管和发射管,锥段半锥角度为5°。采用AUTODYN软件对该内爆发射器的工作过程进行了仿真计算。

    • 采用有限元中的流固耦合方法进行仿真。将模型分为Euler模型和Lagrange模型两个部分:Euler模型包括填充的氦气、压缩管、装药以及周围空气介质;Lagrange模型包括压缩段外壳、高压段、发射管以及弹丸。外壳、高压段、压缩管、发射管均采用4340钢。本构模型采用Johnson Cook模型,状态方程为Linear。装药采用爆速为7 km/s左右的季戊四醇四硝酸酯(PETN),状态方程为JWL;驱动气体为氦气,采用理想气体状态方程;弹丸本构模型为Steinberg Guinan,状态方程为Shock。材料参数均选自AUTUDYN数据库。

      为了使弹丸能够约束初始状态的高压氦气,在弹丸与高压气体交界处增加一层Lagrange网格。该网格与高压段和弹丸均采用共节点的方式固定,并将该部分的材料失效应变设置为0.5,当达到失效应变时自动删除该部分的网格,使其不会对弹丸发射造成过大影响。

    • 针对弹丸材料和充气压力两个参数,共进行4个状态的仿真计算,相关参数以及各状态下获得的弹丸出炮口速度见表1

      No.Material of projectileFilling pressure/MPaDiameter of launch tube/mmDiameter of pump tube/mmMuzzle velocity/(km·s–1
      1Aluminum alloy4816 8.62
      2Aluminum alloy5816 9.17
      3Aluminum alloy6816 9.25
      4Magnesium alloy581610.66

      表 1  不同弹丸材料和充气压力下仿真计算参数

      Table 1.  Simulation parameters of launchers with different projectile materials and filling pressure

    • 图3给出了内爆式超高速发射装置发射铝弹丸的仿真结果,其中弹丸尺寸为$\varnothing$8 mm × 4 mm,质量为0.55 g。零时刻从装药的左端面开始点火,装药爆炸后开始挤压压缩管形成锥形活塞,并在氦气(初始压力5 MPa)中形成压力达到500 MPa左右的冲击波向右传播,外壳达到失效应变后被删除,如图3(b)所示,压力超过1 GPa时显示为红色;在55 μs左右,冲击波到达弹丸底部反射,形成峰值压力高达5 GPa的气体推动弹丸加速运动;70 μs左右炸药爆轰结束;在108 μs左右弹丸离开发射管,达到最高发射速度。

      图  3  8 mm口径内爆式发射装置工作过程

      Figure 3.  Launch process of 8 mm caliber implosion launcher

    • 图4给出了充气压力分别为4、5和6 MPa状态下铝弹丸的速度-时间历程。从速度-时间曲线上可以看到,弹丸加速过程有较为明显的二次冲击加载。初始冲击加载是由先导冲击波到达弹丸底部产生的;二次冲击加载是弹丸底部反射的冲击波到达左端后再次反射冲击波,该冲击波追赶上弹丸产生的。从表1中的数据可知,4、5和6 MPa充气压力下弹丸的出炮口速度分别为8.62、9.17和9.25 km/s。可以看到,炮口速度随充气压力的增加而增加,但增加幅度缩小。可能是由于当充气压力从5 MPa增加至6 MPa时,压缩管、高压段内壁的膨胀显著增加,削弱了驱动压力增加的增速效果。

      图  4  不同充气压力下铝弹丸的速度-时间历史

      Figure 4.  Velocity-time history of aluminum projectiles with different filling pressure

    • 根据建立的仿真模型对尺寸为$\varnothing$8 mm × 4 mm的铝合金弹丸和镁合金弹丸进行发射过程的计算,初始填充5 MPa氦气,计算结果如图5所示。0.55 g铝合金弹丸的最终发射速度为9.17 km/s;0.37 g镁合金弹丸的发射速度为10.66 km/s,比铝合金弹丸速度高1.49 km/s。

      图  5  不同材料弹丸速度-时间历史

      Figure 5.  Velocity-time history of projectiles with different materials

    • 发射器总长度为914 mm,最大部位直径为81.4 mm,主要包括发射管、发射管护套、高压段、外壳、压缩管、弹丸和装药等。其中:发射管内径为8 mm,长度为304 mm;压缩管内径为16 mm,长度为495 mm。装药为柱壳装药,厚度约为5 mm,装药量约为300 g,采用两层以黑索金(RDX)为基底的片状挠性炸药包裹而成,挠性炸药的爆速为7.1 km/s。弹丸直径为8 mm,高度为4 mm。弹丸材料有两种,分别是铝合金和镁合金,其中铝合金弹丸质量约为0.55 g,镁合金弹丸质量约为0.37 g,安装完成后的发射器如图6所示。

      图  6  内爆式超高速发射器实物

      Figure 6.  Image of implosion-driven hypervelocity launcher

    • 实验装置布局如图7所示。实验装置主要包括发射器、测试系统、真空系统和防护系统等。发射器放置在厚壁防护筒内,防止爆炸产生的碎片向外飞散,损伤实验装置和设备。采用激光测速系统和靶网测速装置等测量弹丸的发射速度,并采用序列激光阴影成像仪拍摄模型的飞行姿态和形貌。实验中发射器压缩管内充5 MPa氦气,从端面起爆装药。

      图  7  实验装置布局示意图

      Figure 7.  Layout of experimental equipment

    • 共开展了7次实验,其中铝合金弹丸实验3次,镁合金弹丸实验4次,具体实验参数如表2所示。

      No.Material of projectileMass of projectile/gFilling pressure/MPaDiameter of launch tube/mmDiameter of pump tube/mmMaximum velocity/(km·s–1
      ILT04Aluminum alloy0.555816 7.26
      ILT07 6.96
      ILT14 7.95
      ILT08Magnesium alloy0.375816 9.73
      ILT0910.28
      ILT11 9.36
      ILT12 9.77

      表 2  内爆发射器实验相关参数

      Table 2.  Parameters of the implosion-driven launchers in tests

    • 实验后的发射器压缩管和外壳完全碎裂,高压段外壳明显膨胀变形并出现裂纹,回收的典型发射器装置如图8所示。

      图  8  ILT08实验发射器装置回收

      Figure 8.  Recycle launcher of test ILT08

    • 3次铝合金弹丸实验结果如图9所示,其中横坐标为测点位置离炮口的距离,纵坐标为测得的速度,各次实验测得的最大速度见表2。其中,实验中测得的弹丸最高出炮口速度为7.95 km/s,比仿真预测速度9.17 km/s低1.22 km/s,相对偏差为15.3%。实验速度偏低可能是许多因素共同影响的结果,例如装置加工误差、装药松紧程度、发射管与弹丸有摩擦阻力等,而仿真状态则相对理想,没有考虑这些因素的影响。另外,实验中弹丸的速度也有1 km/s左右的偏差,挠性炸药装填、装药爆轰的圆周同步性、发射管与弹丸的配合程度等问题都会对实际发射速度造成一定影响,导致重复实验出现一定的偏差。

      图  9  0.55 g铝合金弹丸速度测试结果

      Figure 9.  Experimental muzzle velocities of 0.55 g aluminum projectile

    • 4次镁合金有效实验获得的速度结果如图10所示,实验测得的最大速度见表2。4次实验获得的最高发射速度与仿真预测速度10.66 km/s非常接近,相对偏差为3.7%。镁合金弹丸在实验中的速度偏差为1 km/s左右,产生偏差的原因可能与铝合金弹丸相同。

      图  10  0.37 g镁合金弹丸速度测试结果

      Figure 10.  Experimental muzzle velocities of 0.37 g magnesium projectile

    • 通过超高速八序列激光阴影成像仪拍摄弹丸在实验过程中的飞行情况,图11为3次实验拍摄的照片,其中ILT11、ILT12为镁合金弹丸,ILT14为铝合金弹丸。在图11中可以看到,实验过程中的弹丸仍保持为一个整体弹丸,但存在一定程度变形,其中实验ILT12的弹丸变形非常明显。发生变形的原因可能是材料强度不够,也可能是发射器结构存在一定的缺陷,有待进一步深入研究。

      图  11  弹丸序列激光阴影成像结果

      Figure 11.  Projectile photos shot by sequence laser shadowgraph imager

    • 通过与加拿大麦吉尔大学合作,初步设计了8 mm口径内爆式超高速发射器结构,采用AUTODYN软件对内爆式超高速发射器内弹道进行数值模拟,所获得的发射器作用过程中弹底压力最高可达5 GPa,并计算了铝合金弹丸和镁合金弹丸的发射速度。最终通过开展验证实验,证明了设计的内爆发射技术能够将尺寸为$\varnothing$8 mm × 4 mm、质量为0.37 g的柱状镁合金弹丸发射到10.28 km/s,将尺寸为$\varnothing$8 mm × 4 mm、质量为0.55 g的柱状铝合金弹丸发射到7.95 km/s。实验获得的发射速度与数值仿真结果吻合较好。实验结果也证明了内爆式超高速发射技术的可行性,在空间碎片的撞击与防护方面具有较强的应用前景。利用超高速八序列激光阴影成像仪拍摄弹丸的飞行情况,获得了弹丸发射后的形状,发现发射后的弹丸是一个整体弹丸,但与原始柱形结构相比,存在不同程度的变形。未来将深入探索提高内爆发射器速度的方法,分析弹丸发生变形的原因,并在保持弹丸初始形状的发射器结构设计等方面开展进一步的研究工作。

      感谢中国空气动力研究与发展中心的罗庆、龙耀、宋强、周毅、覃金贵、李俊玲、姜林、邹胜宇、李文光、廖强、刘晓龙、廖富强、丁建文等同事在实验过程中提供的无私帮助。

参考文献 (15)

目录

    /

    返回文章
    返回