钝感炸药冲击起爆反应过程的PDV技术

杨舒棋 张旭 彭文杨 舒俊翔 刘寿先 覃双 钟斌

杨舒棋, 张旭, 彭文杨, 舒俊翔, 刘寿先, 覃双, 钟斌. 钝感炸药冲击起爆反应过程的PDV技术[J]. 高压物理学报, 2020, 34(2): 023402. doi: 10.11858/gywlxb.20190856
引用本文: 杨舒棋, 张旭, 彭文杨, 舒俊翔, 刘寿先, 覃双, 钟斌. 钝感炸药冲击起爆反应过程的PDV技术[J]. 高压物理学报, 2020, 34(2): 023402. doi: 10.11858/gywlxb.20190856
YANG Shuqi, ZHANG Xu, PENG Wenyang, SHU Junxiang, LIU Shouxian, QIN Shuang, ZHONG Bin. PDV Technology of Shock Initiation Reaction Process of Insensitive Explosive[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 023402. doi: 10.11858/gywlxb.20190856
Citation: YANG Shuqi, ZHANG Xu, PENG Wenyang, SHU Junxiang, LIU Shouxian, QIN Shuang, ZHONG Bin. PDV Technology of Shock Initiation Reaction Process of Insensitive Explosive[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 023402. doi: 10.11858/gywlxb.20190856

钝感炸药冲击起爆反应过程的PDV技术

doi: 10.11858/gywlxb.20190856
基金项目: 军科委基础加强重点项目(2019-JCJQ-ZD-203);科学挑战专题(TZ2018001)
详细信息
    作者简介:

    杨舒棋(1993-),女,硕士研究生,主要从事冲击起爆研究. E-mail:yangshuqi77@126.com

    通讯作者:

    张 旭(1972-),男,研究员,博士生导师,主要从事流体动力学研究. E-mail:caepzx@sohu.com

  • 中图分类号: O384

PDV Technology of Shock Initiation Reaction Process of Insensitive Explosive

  • 摘要: 为研究A型钝感炸药冲击起爆反应演化过程,进行了火炮驱动蓝宝石飞片的一维平面冲击实验。实验中采用光子多普勒测速仪(Photonic Doppler velocimetry, PDV)技术测量冲击起爆后台阶型炸药的粒子速度。在炸药不同厚度台阶的后界面固定镀铝膜的楔形氟化锂(LiF)窗口,利用阻抗匹配将PDV测量的LiF窗口波后粒子速度转化为炸药样品波后粒子速度。比较组合式电磁粒子速度计和PDV两种测速技术,结果表明,相较于组合式电磁粒子速度计,PDV测量的粒子精度更高。简要分析了PDV测速探头角度、探头孔径、窗口折射率等影响,得到PDV测速的相对不确定度小于1%。

     

  • 图  PDV实验装置和炸药安装示意图

    Figure  1.  Schematic of PDV experimental device and explosive installation

    图  PDV实验装置及炸药安装实物

    Figure  2.  Images of PDV experimental device and explosive installation

    图  组合式电磁粒子速度计实验装置和炸药安装

    Figure  3.  Experimental device and explosive installation of multiple electromagnetic particle velocity gauge

    图  PDV测量的炸药样品粒子速度-时间关系

    Figure  4.  Particle velocity-time relationship of explosive measured by PDV

    图  组合式电磁粒子速度计测量的粒子速度历史

    Figure  5.  History of particle velocity measured by multiple electromagnetic particle velocity gauge

    图  两种方法测量得到的粒子速度对比

    Figure  6.  Comparison of particle velocities obtained by two methods

    图  PDV探头布置

    Figure  7.  PDV probe arrangement

    图  边侧稀疏的影响

    Figure  8.  Effect of side sparsity

    表  1  台阶型炸药平面冲击实验参数

    Table  1.   Parameters of plane impact experiments on stepped explosive

    Shot No.ρ0S/(g·cm−3)uimp/(km·s−1)up/(km·s−1)p0/GPa
    011.8971.3851.15110.66
    021.8971.5021.24011.93
    031.8951.5501.27712.47
    下载: 导出CSV

    表  2  台阶型炸药平面冲击实验数据

    Table  2.   Data of plane impact experiments on stepped explosive

    Step thickness/mmuw/(km·s−1)us/(km·s−1)DS/(km·s−1)
    Shot 01 Shot 02Shot 03Shot 01 Shot 02Shot 03Shot 01 Shot 02Shot 03
    20.8860.9821.0411.2241.3341.4025.0385.2735.419
    30.8950.9851.0331.2351.3381.3935.0605.2815.399
    40.8951.0071.0641.2351.3631.4285.0605.3355.474
    50.9221.0301.1131.2661.3891.4835.1275.3905.591
    70.9851.1281.3831.3381.5001.7825.2815.6276.232
    101.0751.3461.8001.4391.7412.2285.4986.1437.186
    下载: 导出CSV

    表  3  炸药二次加速时间间隔

    Table  3.   Time interval of secondary acceleration of explosive

    Shot No.Δt2 /μsΔt3/μsΔt4/μsΔt5/μs
    010.4350.7140.9621.291
    020.3880.6950.8331.310
    030.5750.8001.0851.415
    下载: 导出CSV

    表  4  楔形炸药平面冲击实验参数

    Table  4.   Parameters of plane impact experiments on wedge-shaped explosive

    Shot No.ρ01/(g·cm−3)ρ02/(g·cm−3)uimp/(km·s−1)
    041.8981.8931.356
    051.8971.8941.489
    061.8951.9001.567
    下载: 导出CSV

    表  5  楔形炸药平面冲击实验数据

    Table  5.   Data of plane impact experiments on wedge-shaped explosive

    Depth/mmDS/(km·s−1)us/(km·s−1)
    Shot 04Shot 05Shot 06Shot 04Shot 05Shot 06
    34.7174.7484.9881.1511.2631.481
    44.8085.1235.4701.1841.2931.335
    54.6595.1665.3711.1911.3301.396
    74.7535.2745.7211.2811.5371.671
    105.2086.7017.4171.3462.1772.041
    下载: 导出CSV

    表  6  A型炸药平面冲击边侧稀疏波数据(声速C = 5 km/s)

    Table  6.   Data of sparse waves on the side of flat impact of A explosives (C = 5 km/s)

    Shot No.M1M2/mmM1M3/mmM1M4/mmM1M5/mmM1M7/mmM1M10/mm
    011.3742.0482.5033.2644.2255.579
    021.2401.8572.4362.6163.4894.245
    031.0881.6001.9732.3932.5692.530
    下载: 导出CSV
  • [1] MORO E A. New developments in photon Doppler velocimetry [J]. Journal of Physics: Conference Series, 2014, 500(14): 142023. doi: 10.1088/1742-6596/500/14/142023
    [2] JENSEN B J, HOLTKAMP D B, RIGG P A, et al. Accuracy limits and window corrections for photon Doppler velocimetry [J]. Journal of Applied Physics, 2007, 101(1): 013523. doi: 10.1063/1.2407290
    [3] DOLAN D H. Accuracy and precision in photonic Doppler velocimetry [J]. Review of Scientific Instruments, 2010, 81(5): 053905. doi: 10.1063/1.3429257
    [4] GUSTAVSEN R L, BARTRAM B D, SANCHEZ N J. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon Doppler velocimetry [C]//Shock Compression of Condensed Matter 2009. USA: AIP Conference Proceedings, 2009: 253-256.
    [5] 张涛, 赵继波, 伍星, 等. JBO-9021炸药的冲击起爆Pop关系 [J]. 爆炸与冲击, 2018, 38(4): 743–748.

    ZHANG T, ZHAO J B, WU X, et al. Pop relationship of JBO-9021 explosives [J]. Explosion and Shock Waves, 2018, 38(4): 743–748.
    [6] 裴红波, 黄文斌, 覃锦程, 等. 基于多普勒测速技术的JB-9014炸药反应区结构研究 [J]. 爆炸与冲击, 2018, 38(3): 485–490.

    PEI H B, HUANG W B, QIN J C, et al. Reaction zone structure of JB-9014 explosive measured by PDV [J]. Explosion and Shock Waves, 2018, 38(3): 485–490.
    [7] 张琪敏, 张旭, 赵康, 等. TATB基钝感炸药JB-9014的冲击起爆反应增长规律 [J]. 爆炸与冲击, 2019, 39(4): 041405.

    ZHANG Q M, ZHANG X, ZHAO K, et al. Law of reaction growth of shock initiation on the TATB based insensitive explosive JB-9014 [J]. Explosion and Shock Waves, 2019, 39(4): 041405.
    [8] 刘俊明, 张旭, 裴红波, 等. JB-9014钝感炸药冲击Hugoniot关系测量 [J]. 高压物理学报, 2018, 32(3): 033202.

    LIU J M, ZHANG X, PEI H B, et al. Measurement of Hugoniot relation for JB-9014 insensitive explosive [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 033202.
    [9] 刘俊明, 张旭, 赵康, 等. 用PVDF压力计研究未反应JB-9014钝感炸药的Grüneisen参数 [J]. 高压物理学报, 2018, 32(5): 051301.

    LIU J M, ZHANG X, ZHAO K, et al. Using PVDF gauge to study Grüneisen parameter of unreacted JB-9014 insensitive explosive [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051301.
    [10] 赵万广, 周显明, 李加波, 等. LiF单晶的高压折射率及窗口速度的修正 [J]. 高压物理学报, 2014, 28(5): 571–576. doi: 10.11858/gywlxb.2014.05.010

    ZHAO W G, ZHOU X M, LI J B, et al. Refractive index of LiF single crystal at high pressure and its window correction [J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 571–576. doi: 10.11858/gywlxb.2014.05.010
    [11] CAU J F. Inappropriate use of inclined electromagnetic velocity gauges in explosive [C]//Proceedings of 10th Symposium on Detonation. Office of Naval Research Report ONR, 1993: 33395-12.
    [12] 谭华. 实验冲击波物理导引 [M]. 北京: 国防工业出版社, 2007.

    TAN H. Experimental shock wave physics guidance [M]. Beijing: National Defense Industry Press, 2007.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  8177
  • HTML全文浏览量:  3253
  • PDF下载量:  67
出版历程
  • 收稿日期:  2019-11-11
  • 修回日期:  2019-11-30

目录

    /

    返回文章
    返回