陶瓷和仿珍珠母陶瓷/聚脲复合结构的冲击损伤对比

吴和成 肖毅华

吴和成, 肖毅华. 陶瓷和仿珍珠母陶瓷/聚脲复合结构的冲击损伤对比[J]. 高压物理学报, 2020, 34(2): 024201. doi: 10.11858/gywlxb.20190808
引用本文: 吴和成, 肖毅华. 陶瓷和仿珍珠母陶瓷/聚脲复合结构的冲击损伤对比[J]. 高压物理学报, 2020, 34(2): 024201. doi: 10.11858/gywlxb.20190808
WU Hecheng, XIAO Yihua. Comparison of Impact Damage between Ceramic Structure and Nacre-Like Ceramic/Polyurea Composite Structure[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 024201. doi: 10.11858/gywlxb.20190808
Citation: WU Hecheng, XIAO Yihua. Comparison of Impact Damage between Ceramic Structure and Nacre-Like Ceramic/Polyurea Composite Structure[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 024201. doi: 10.11858/gywlxb.20190808

陶瓷和仿珍珠母陶瓷/聚脲复合结构的冲击损伤对比

doi: 10.11858/gywlxb.20190808
基金项目: 国家自然科学基金地区科学基金(11862005);江西省青年科学基金(20181BAB211012)
详细信息
    作者简介:

    吴和成(1993-),男,硕士研究生,主要从事防护材料/结构的设计与分析研究.E-mail: 1977754061@qq.com

    通讯作者:

    肖毅华(1984-),男,博士,副教授,主要从事防护材料/结构的设计与分析、先进工程数值方法及应用研究. E-mail: xiaoyihua@ecjtu.edu.cn

  • 中图分类号: O385

Comparison of Impact Damage between Ceramic Structure and Nacre-Like Ceramic/Polyurea Composite Structure

  • 摘要: 建立了陶瓷梁受平头弹撞击的有限元模型,模拟了其冲击损伤演化过程,模拟结果与实验结果吻合较好,验证了模型的合理性。在此基础上,建立了仿珍珠母陶瓷/聚脲复合梁受相同弹体撞击的有限元模型,将其损伤演化过程与陶瓷梁进行了对比,并且分析了弹体撞击速度对两者损伤过程的影响。结果表明:在高速撞击下,陶瓷梁的损伤呈锥状扩展,梁发生整体性破坏,而仿珍珠母复合梁的损伤沿纵向(冲击方向)呈圆柱状扩展,梁发生局部性破坏,能更好地保持结构完整性;随着弹体撞击速度的增加,陶瓷梁的损伤范围加大,损伤程度加剧,而仿珍珠母复合梁的损伤范围在撞击速度高于一定值后变化不大,仅损伤程度增加。

     

  • 图  有限元模型

    Figure  1.  FEM model

    图  梁的损伤演化

    Figure  2.  Damage evolution of beams

    图  30 ${\text{μ}}{\rm{s}}$时梁的损伤云图

    Figure  3.  Damage contours of beams at 30 ${\text{μ}}{\rm{s}}$

    图  梁背面中心点的z向正应力(σz)的时程曲线

    Figure  4.  History curves of normal stress in z-direction (σz) for center point on back face of beams

    图  不同撞击速度下梁的损伤云图

    Figure  5.  Damage contours of beams at different impact velocities

    表  1  弹体的材料参数[13]

    Table  1.   Material parameters for projectile[13]

    ρ/(kg·m–3)A/MPaB/MPanC
    7 8307925100.260.014
    下载: 导出CSV

    表  2  陶瓷的材料参数[14]

    Table  2.   Material parameters for ceramic[14]

    ρ/(kg·m–3)G/GPaAcBcMNT/GPa
    3 1631830.960.351.00.650.37
    σHEL/GPapHEL/GPaD1D2K1/GPaK2/GPaK3/GPa
    14.5675.90.480.48204.78500
    下载: 导出CSV
  • [1] 江洁, 董侠, 陈美玉, 等. 现代防弹材料 [J]. 材料导报, 2013, 27(6): 70–76.

    JIANG J, DONG X, CHEN M Y, et al. A review of modern bulletproof materials [J]. Materials Reports, 2013, 27(6): 70–76.
    [2] 孙志杰, 吴燕, 张佐光, 等. 防弹陶瓷的研究现状与发展趋势 [J]. 宇航材料工艺, 2005(5): 10–14. doi: 10.3969/j.issn.1007-2330.2005.02.003

    SUN Z J, WU Y, ZHANG Z G, et al. Current status and development of ballistic ceramics [J]. Aerospace Materials & Technology, 2005(5): 10–14. doi: 10.3969/j.issn.1007-2330.2005.02.003
    [3] 王振兴, 原梅妮, 李立州, 等. 贝壳珍珠母增韧机理研究进展 [J]. 材料导报, 2015, 29(8): 98–102.

    WANG Z X, YUAN M N, LI L Z, et al. Research progress of toughening mechanisms of nacre shell [J]. Materials Reports, 2015, 29(8): 98–102.
    [4] GRUJICIC M, SNIPES J S, RAMASWAMI S. Ballistic impact behavior of nacre-like laminated composites consisting of B4C tablets and polyurea matrix [J]. Journal of Materials Engineering & Performance, 2016, 25(3): 977–994.
    [5] GRUJICIC M, RAMASWAMI S, SNIPES J. Computational investigation of ballistic-impact behavior and penetration resistance of a nacre-like ceramic/polymer laminated composite [J]. International Journal of Structural Integrity, 2017, 8(1): 79–107. doi: 10.1108/IJSI-09-2015-0041
    [6] WU K J, ZHENG Z J, ZHANG S S, et al. Interfacial strength-controlled energy dissipation mechanism and optimization in impact-resistant nacreous structure [J]. Materials & Design, 2019, 163: 107532.
    [7] WANG Z G, SUN Y Y, WU H, et al. Low velocity impact resistance of bio-inspired building ceramic composites with nacre-like structure [J]. Construction and Building Materials, 2018, 169: 851–858. doi: 10.1016/j.conbuildmat.2018.03.043
    [8] GU G X, TAKAFFOLI M, HSIEH A J, et al. Biomimetic additive manufactured polymer composites for improved impact resistance [J]. Extreme Mechanics Letters, 2016, 9: 317–323. doi: 10.1016/j.eml.2016.09.006
    [9] FLORES-JOHNSON E A, SHEN L M, GUIAMATSIA I, et al. A numerical study of bioinspired nacre-like composite plates under blast loading [J]. Composite Structures, 2015, 126: 329–336. doi: 10.1016/j.compstruct.2015.02.083
    [10] HAYNES A, REINHARDT L, LIM C. Design and processing of alumina plate composites for ballistic nacre alumina structures [J]. Processing and Manufacturing, 2018, 3(18): 957–962.
    [11] YIN Z, HANNARD F, BARTHELAT F. Impact-resistant nacre-like transparent materials [J]. Science, 2019, 364(6447): 1260–1263. doi: 10.1126/science.aaw8988
    [12] RIOU P, DENOUAL C, COTTENOT C E. Visualization of the damage evolution in impacted silicon carbide ceramics [J]. International Journal of Impact Engineering, 1998, 21(4): 225–235. doi: 10.1016/S0734-743X(97)00018-3
    [13] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//7th International Symposium on Ballistics. Hague, Netherlands, 1983: 541–547.
    [14] CRONIN D S, BUI K, KAUFMANN C, et al. Implementation and validation of the Johnson-Holmquist ceramic material model in LS-DYNA [C]//4th European LS-DYNA Users Conference. Ulm, Germany, 2004: 47–60.
    [15] MOHOTTI D, ALI M, NGO T, et al. Strain rate dependent constitutive model for predicting the material behaviour of polyurea under high strain rate tensile loading [J]. Materials & Design, 2014, 53: 830–837.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  6553
  • HTML全文浏览量:  3023
  • PDF下载量:  40
出版历程
  • 收稿日期:  2019-07-11
  • 修回日期:  2019-08-30

目录

    /

    返回文章
    返回