CFRP层合板低速冲击响应及损伤特性研究

廖斌斌 周建武 林渊 贾利勇 王栋亮 花争立 郑津洋 顾超华

廖斌斌, 周建武, 林渊, 贾利勇, 王栋亮, 花争立, 郑津洋, 顾超华. CFRP层合板低速冲击响应及损伤特性研究[J]. 高压物理学报, 2019, 33(4): 044202. doi: 10.11858/gywlxb.20180699
引用本文: 廖斌斌, 周建武, 林渊, 贾利勇, 王栋亮, 花争立, 郑津洋, 顾超华. CFRP层合板低速冲击响应及损伤特性研究[J]. 高压物理学报, 2019, 33(4): 044202. doi: 10.11858/gywlxb.20180699
LIAO Binbin, ZHOU Jianwu, LIN Yuan, JIA Liyong, WANG Dongliang, HUA Zhengli, ZHENG Jinyang, GU Chaohua. Low-Velocity Impact Behavior and Damage Characteristics of CFRP Laminates[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044202. doi: 10.11858/gywlxb.20180699
Citation: LIAO Binbin, ZHOU Jianwu, LIN Yuan, JIA Liyong, WANG Dongliang, HUA Zhengli, ZHENG Jinyang, GU Chaohua. Low-Velocity Impact Behavior and Damage Characteristics of CFRP Laminates[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044202. doi: 10.11858/gywlxb.20180699

CFRP层合板低速冲击响应及损伤特性研究

doi: 10.11858/gywlxb.20180699
基金项目: 国家重点研发计划(2017YFC0805601)
详细信息
    作者简介:

    廖斌斌(1992-),男,博士研究生,主要从事复合材料冲击动力学研究. E-mail:hjslbb@zju.edu.cn

    通讯作者:

    郑津洋(1964-),男,博士,教授,主要从事先进能源承压设备研究. E-mail:jyzh@zju.edu.cn

  • 中图分类号: O347.1; V214.8

Low-Velocity Impact Behavior and Damage Characteristics of CFRP Laminates

  • 摘要: 为了研究碳纤维增强复合材料(Carbon Fiber Reinforced Plastics,CFRP)层合板低速冲击力学性能,开展了铺层顺序为[454/–454]4T的CFRP层合板落锤低速冲击试验。研究了条形冲锤冲击角度和半球形冲锤直径两个影响因素下的CFRP层合板低速冲击力学响应,同时通过凹坑深度和分层损伤面积研究了层合板低速冲击损伤特性。试验结果表明:当条形冲锤冲击角度与层合板表面纤维方向平行时以及以较小直径的半球形冲锤冲击时,最大中心位移和能量耗散较大,凹坑深度和分层面积也较大;在冲锤直径和冲击角度两个单因素变量下,凹坑深度与分层损伤面积成正相关;直径为10 mm的半球形冲锤冲击层合板时,在凹坑区域存在明显的纤维断裂;14 mm和16 mm半球形冲锤冲击时,损伤虽目视可见,但未见明显纤维断裂。

     

  • 图  试验装置及夹具

    Figure  1.  Testing machine and the fixture

    图  条形冲锤和半球形冲锤

    Figure  2.  Strip impactor and hemispherical impactor

    图  条形冲锤冲击角度

    Figure  3.  Impactor angle of the strip impactor

    图  冲击后试样C扫图

    Figure  4.  C-scan results of all types of specimens after impact

    图  冲击后冲击面的损伤形貌

    Figure  5.  Damage at the impact face after impact

    图  冲锤加载示意图

    Figure  6.  Sketch of the impactor loading

    图  各试样的冲击力-时间曲线

    Figure  7.  Impact force-time curves of each specimens

    图  条形冲锤和半球形冲锤冲击下典型试样的冲击力-时间曲线

    Figure  8.  Typical impact force-time curves under strip and hemispherical impactors impact

    图  条形冲锤和半球形冲锤冲击下典型试样的冲击力-中心位移曲线

    Figure  9.  Typical impact force-central displacement curves under strip and hemispherical impactors impact

    图  10  条形冲锤和半球形冲锤冲击下典型试样的能量-时间曲线

    Figure  10.  Typical energy-time curves under strip and hemispherical impactors impact

    表  1  低速冲击测试安排

    Table  1.   Low-velocity impact test arrangements

    TestKey factorTypeImpactor parameterImpactor energy/JImpactor velocity/
    (m∙s−1
    Times
    1Impactor angleS–45
    S0
    S45
    Strip impactor, –45°
    Strip impactor, 0°
    Strip impactor, 45°
    101.882
    2Impactor diameterH10
    H14
    H16
    Hemispherical impactor, 10 mm
    Hemispherical impactor, 14 mm
    Hemispherical impactor, 16 mm
    101.88 2
    下载: 导出CSV

    表  2  冲击损伤测试结果

    Table  2.   Summary of the impact test results

    SpecimenDent depth/mmDelamination damage area/mm2SpecimenDent depth/mmDelamination damage area/mm2
    S–450.222147H100.301613
    S00.191710H140.231553
    S450.171651H160.211230
    下载: 导出CSV
  • [1] LIU P F, LIAO B B, JIA L Y, et al. Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact [J]. Composite Structures, 2016, 149: 408–422. doi: 10.1016/j.compstruct.2016.04.012
    [2] LIAO B B, LIU P F. Finite element analysis of dynamic progressive failure properties of GLARE hybrid laminates under low-velocity impact [J]. Journal of Composite Materials, 2018, 52(10): 1317–1330. doi: 10.1177/0021998317724216
    [3] SCHOEPPNER G A, ABRATE S. Delamination threshold loads for low velocity impact on composite laminates [J]. Composites Part A: Applied Science and Manufacturing, 2000, 31(9): 903–915. doi: 10.1016/S1359-835X(00)00061-0
    [4] YANG B, WANG Z, ZHOU L, et al. Experimental and numerical investigation of interply hybrid composites based on woven fabrics and PCBT resin subjected to low-velocity impact [J]. Composite Structures, 2015, 132: 464–476. doi: 10.1016/j.compstruct.2015.05.069
    [5] WAN Y, DIAO C, YANG B, et al. GF/epoxy laminates embedded with wire nets: a way to improve the low-velocity impact resistance and energy absorption ability [J]. Composite Structures, 2018, 202: 818–835. doi: 10.1016/j.compstruct.2018.04.041
    [6] 钭李昕, 王秋成, 陈光耀. 碳纤维复合材料低速冲击特性及损伤分析研究 [J]. 机电工程, 2016, 33(7): 815–821.

    TOU L X, WANG Q C, CHEN G Y. Analysis on low velocity impact performance and damage behavior of carbon fiber composite beam [J]. Journal of Mechanical & Electrical Engineering, 2016, 33(7): 815–821.
    [7] 竺铝涛, 张发. 碳纤维复合材料层压板低速冲击试验研究 [J]. 航空发动机, 2015, 41(1): 85–88.

    ZHU L T, ZHANG F. Experimental investigation of low-speed impact for carbon fiber composite laminate [J]. Aeroengine, 2015, 41(1): 85–88.
    [8] TAN W, FALZON B G, CHIU L N S, et al. Predicting low velocity impact damage and compression-after-impact (CAI) behaviour of composite laminates [J]. Composites Part A: Applied Science and Manufacturing, 2015, 71: 212–226. doi: 10.1016/j.compositesa.2015.01.025
    [9] DUBARY N, BOUVET C, RIVALLANT S, et al. Damage tolerance of an impacted composite laminate [J]. Composite Structures, 2018, 206: 261–271. doi: 10.1016/j.compstruct.2018.08.045
    [10] 姚振华, 李亚智, 刘向东, 等. 复合材料层合板低速冲击后剩余压缩强度研究 [J]. 西北工业大学学报, 2012, 30(4): 518–523. doi: 10.3969/j.issn.1000-2758.2012.04.008

    YAO Z H, LI Y Z, LIU X D, et al. Effectively calculating residual compressive strength of composite laminate after impact(CAI) [J]. Journal of Northwestern Polytechnical University, 2012, 30(4): 518–523. doi: 10.3969/j.issn.1000-2758.2012.04.008
    [11] MITREVSKI T, MARSHALL I H, THOMSON R, et al. The effect of impactor shape on the impact response of composite laminates [J]. Composite Structures, 2005, 67(2): 139–148. doi: 10.1016/j.compstruct.2004.09.007
    [12] AMARO A M, REIS P N B, MAGALHÃES A G, et al. The effect of the impactor diameter and boundary conditions on low velocity impact composites behavior [J]. Applied Mechanics and Materials, 2007, 7/8: 217–222. doi: 10.4028/www.scientific.net/AMM.7-8
    [13] ICTEN B M, KIRAL B G, DENIZ M E. Impactor diameter effect on low velocity impact response of woven glass epoxy composite plates [J]. Composites Part B: Engineering, 2013, 50: 325–332. doi: 10.1016/j.compositesb.2013.02.024
    [14] ANSARI M M, CHAKRABARTI A. Effect of boundary condition and impactor nose angle on impact behaviour of FRP composite: experimental and FE analyses [J]. Materials Today: Proceedings, 2017, 4(9): 9645–9649. doi: 10.1016/j.matpr.2017.06.241
    [15] XIE W B, ZHANG W, KUANG N H, et al. Experimental investigation of normal and oblique impacts on CFRPs by high velocity steel sphere [J]. Composites Part B: Engineering, 2016, 99: 483–493. doi: 10.1016/j.compositesb.2016.06.020
    [16] SEBAEY T A, GONZÁLEZ E V, LOPES C S, et al. Damage resistance and damage tolerance of dispersed CFRP laminates: effect of ply clustering [J]. Composite Structures, 2013, 106: 96–103. doi: 10.1016/j.compstruct.2013.05.052
    [17] WANG H R, LONG S C, ZHANG X Q, et al. Study on the delamination behavior of thick composite laminates under low-energy impact [J]. Composite Structures, 2018, 184: 461–473. doi: 10.1016/j.compstruct.2017.09.083
    [18] SHI Y, SWAIT T, SOUTIS C. Modelling damage evolution in composite laminates subjected to low velocity impact [J]. Composite Structures, 2012, 94(9): 2902–2913. doi: 10.1016/j.compstruct.2012.03.039
    [19] XU Z, YANG F, GUAN Z W, et al. An experimental and numerical study on scaling effects in the low velocity impact response of CFRP laminates [J]. Composite Structures, 2016, 154: 69–78. doi: 10.1016/j.compstruct.2016.07.029
    [20] ASTM International. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136/D7136M-15 [S]. West Conshohocken, PA: ASTM International, 2015.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  6417
  • HTML全文浏览量:  2711
  • PDF下载量:  25
出版历程
  • 收稿日期:  2018-12-12
  • 修回日期:  2018-12-25

目录

    /

    返回文章
    返回