高压CO2在虾肉糜中的纵向吸附过程

罗帅 董安迪 刘书成 吉宏武 高静 毛伟杰 郝记明 邓楚津

罗帅, 董安迪, 刘书成, 吉宏武, 高静, 毛伟杰, 郝记明, 邓楚津. 高压CO2在虾肉糜中的纵向吸附过程[J]. 高压物理学报, 2019, 33(2): 025301. doi: 10.11858/gywlxb.20180690
引用本文: 罗帅, 董安迪, 刘书成, 吉宏武, 高静, 毛伟杰, 郝记明, 邓楚津. 高压CO2在虾肉糜中的纵向吸附过程[J]. 高压物理学报, 2019, 33(2): 025301. doi: 10.11858/gywlxb.20180690
LUO Shuai, DONG Andi, LIU Shucheng, JI Hongwu, GAO Jing, MAO Weijie, HAO Jiming, DENG Chujin. Longitudinal Adsorption of High Pressure Carbon Dioxide in Shrimp Surimi[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 025301. doi: 10.11858/gywlxb.20180690
Citation: LUO Shuai, DONG Andi, LIU Shucheng, JI Hongwu, GAO Jing, MAO Weijie, HAO Jiming, DENG Chujin. Longitudinal Adsorption of High Pressure Carbon Dioxide in Shrimp Surimi[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 025301. doi: 10.11858/gywlxb.20180690

高压CO2在虾肉糜中的纵向吸附过程

doi: 10.11858/gywlxb.20180690
基金项目: 国家自然科学基金(31771997);广东海洋大学创新强校重大培育项目(GDOU2017052603);现代农业产业技术体系建设专项(CARS-48);广东普通高等学校水产品高值化加工与利用创新团队项目(GDOU2016030503)
详细信息
    作者简介:

    罗 帅(1992-),男,硕士研究生,主要从事海洋食品保鲜与加工研究. E-mail:1715921910@qq.com

    通讯作者:

    刘书成(1977-),男,博士,教授,博士生导师,主要从事海洋食品非热加工技术基础理论与应用研究. E-mail:Lsc771017@163.com

  • 中图分类号: TS254.4; O521.9

Longitudinal Adsorption of High Pressure Carbon Dioxide in Shrimp Surimi

  • 摘要: 为了研究高压CO2(High Pressure Carbon Dioxide,HPCD)在蛋白质中的吸附行为,以圆柱形虾肉糜为研究对象,构建纵向溶解吸附模型,采用磁悬浮天平高温高压等温吸附仪测试HPCD在虾肉糜中的纵向吸附质量,研究压强和温度对纵向吸附质量的影响规律。结果表明:仪器直接测得的吸附质量为CO2在虾肉糜中的纵向过剩吸附质量,不能准确反映纵向绝对吸附质量;在吸附未饱和时采用饱和吸附相体积法将过剩吸附质量校正为绝对吸附质量,在吸附饱和时采用吸附相密度法将过剩吸附质量校正为绝对吸附质量;绝对吸附质量更能真实地反映CO2在虾肉糜中的吸附能力。在等温条件下,随着压强升高,CO2在虾肉糜中的纵向绝对比吸附先急剧增加达到峰值,后稍下降并趋于平稳;在等压条件下,随着温度升高,CO2在虾肉糜中的纵向绝对比吸附下降。35~60 ℃时虾肉糜对CO2的纵向绝对比吸附最大值分布在45.53~111.49 cm3/g。研究结果为建立HPCD在虾肉糜中纵向吸附模型提供了基础数据,并为控制虾肉糜形成凝胶的品质提供技术参考。

     

  • 图  Isosorp型磁悬浮天平高温高压吸附仪

    Figure  1.  High temperature and high pressure adsorption instrument for Isosorp magnetic suspension balance

    图  HPCD在虾肉糜中纵向溶解吸附模型和实验模具

    Figure  2.  Model and experimental mould of longitudinal adsorption and dissolution of HPCD in shrimp surimi

    图  空白测试中磁悬浮天平读数与氦气密度之间的线性关系

    Figure  3.  The linear relationship between magnetic suspension balance reading and helium density in blank experiment

    图  浮力测试中磁悬浮天平读数与氦气密度之间的线性关系

    Figure  4.  The linear relationship between magnetic suspension balance reading and helium density in buoyancy experiment

    图  CO2在虾肉糜中的纵向过剩比吸附的变化

    Figure  5.  Changes of longitudinal excess specific adsorption of CO2 in shrimp surimi

    图  饱和吸附时磁悬浮天平读数与CO2密度之间的线性关系(60 ℃)

    Figure  6.  The linear relationship between magnetic suspension balance reading and CO2 density in saturated adsorption and dissolution(60 ℃)

    图  CO2在虾肉糜中的纵向绝对比吸附的变化

    Figure  7.  Changes of longitudinal absolute specific adsorption of CO2 in shrimp surimi

    表  1  不同测试温度下样品的质量和体积

    Table  1.   Mass and volume of samples at different experiment temperatures

    Temperature/℃ Mass/g Volume /cm3
    msc+s msc ms Vsc+s Vsc Vs
    35 26.8886 20.7701 6.1185 8.6531 2.6448 6.0083
    40 26.5088 20.7701 5.7387 8.1797 2.6448 5.5349
    45 26.4748 20.7701 5.7047 7.8168 2.6448 5.1720
    50 26.6679 20.7701 5.8978 8.3598 2.6448 5.7150
    55 26.3209 20.7701 5.5508 7.8427 2.6448 5.1979
    60 26.7260 20.7701 5.9559 8.1192 2.6448 5.4744
    下载: 导出CSV

    表  2  不同温度下CO2在虾肉糜中的饱和吸附相体积和质量及吸附相密度

    Table  2.   Saturated adsorption phase volume, mass and density of CO2 in shrimp surimi at different temperatures

    Temperature/℃ Vbx/cm3 mbx/g ${\rho _{{\rm{xf}}}}$/(g·cm–3 )
    35 0.6276 0.9544 1.5208
    40 0.5647 0.8292 1.4684
    45 0.8024 0.7012 0.8739
    50 0.4214 0.6831 1.6210
    55 0.5163 0.5191 1.0054
    60 0.5287 0.4600 0.8700
    下载: 导出CSV
  • [1] FRASER D. Bursting bacteria by release of gas pressure [J]. Nature, 1951, 167: 33–34.
    [2] HU W F, ZHOU L Y, XU Z Z, et al. Enzyme inactivation in food processing using high pressure carbon dioxide technology [J]. Critical Reviews of Food Science and Nutrition, 2013, 53(2): 145–161. doi: 10.1080/10408398.2010.526258
    [3] ZHOU L Y, BI X F, XU Z H, et al. Effects of high-pressure CO2 processing on flavor, texture, and color of foods [J]. Critical Reviews of Food Science and Nutrition, 2015, 55(6): 750–768. doi: 10.1080/10408398.2012.677871
    [4] 刘书成, 郭明慧, 刘媛, 等. 高密度CO2杀菌和钝酶及其在食品加工中应用的研究进展 [J]. 广东海洋大学学报, 2016, 36(4): 101–116 doi: 10.3969/j.issn.1673-9159.2016.04.017

    LIU S C, GUO M H, LIU Y, et al. Review on inactivation of microorganisms and enzyme by dense phase carbon dioxide and the application [J]. Journal of Guangdong Ocean University, 2016, 36(4): 101–116 doi: 10.3969/j.issn.1673-9159.2016.04.017
    [5] FERRENTINO G, SPILIMBERGO S. High pressure carbon dioxide pasteurization of solid foods: current knowledge and future outlooks [J]. Trends in Food Science and Technology, 2011, 22(8): 427–441. doi: 10.1016/j.jpgs.2011.04.009
    [6] BALABAN M O, DUONG T. Dense phase carbon dioxide research: current focus and directions [J]. Agriculture and Agricultural Science Procedia, 2014, 2: 2–9. doi: 10.1016/j.aaspro.2014.11.002
    [7] 陈亚励, 屈小娟, 郭明慧, 等. 高密度CO2在肉制品和水产品加工中的应用 [J]. 现代食品科技, 2014, 30(9): 304–311

    CHEN Y L, QU X J, GUO M H, et al. Application of dense-phase carbon dioxide in the processing of meat and aquatic products [J]. Modern Food Science and Technology, 2014, 30(9): 304–311
    [8] RAO W L, LI X, WANG Z Y, et al. Dense phase carbon dioxide combined with mild heating induced myosin denaturation, texture improvement and gel properties of sausage [J]. Journal of Food Process Engineering, 2017, 40(2): e12404. doi: 10.1111/jfpe.2017.40.issue-2
    [9] FERNANDES-SILVA S, MOREIRA-SILVA J, SILVA T H, et al. Porous hydrogels from shark skin collagen crosslinked under dense carbon dioxide atmosphere [J]. Macromolecular Bioscience, 2013, 13(11): 1621–1631. doi: 10.1002/mabi.201300228
    [10] FLOREN M L, SPILIMBERGO S, MOTTA A, et al. Carbon dioxide induced silk protein gelation for biomedical applications [J]. Biomacromolecules, 2012, 13(7): 2060–2072. doi: 10.1021/bm300450a
    [11] 曲亚琳, 张德权, 饶伟丽, 等. 高密度CO2对羊肉糜凝胶特性的影响 [J]. 核农学报, 2010, 24(6): 1226–1231

    QU Y L, ZHANG D Q, RAO W L, et al. Influence of dense phase CO2 on gel properties of minced mutton [J]. Journal of Nuclear Agricultural Sciences, 2010, 24(6): 1226–1231
    [12] 屈小娟, 刘书成, 吉宏武, 等. 高密度CO2诱导制备虾糜凝胶的特性 [J]. 农业工程学报, 2012, 28(20): 282–287

    QU X J, LIU S C, JI H W, et al. Gel properties of shrimp surimi induced by dense phase carbon dioxide [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(20): 282–287
    [13] 刘书成, 郭明慧, 邓倩琳, 等. 高密度CO2处理虾肌球蛋白形成凝胶的临界浓度与凝胶强度 [J]. 农业工程学报, 2017, 33(7): 295–301

    LIU S C, GUO M H, DENG Q L, et al. Least gelation concentration and gel strength of myosin from Litopenaeus vannamei induced by dense phase carbon dioxide [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(7): 295–301
    [14] LIU S C, LIU Y, LUO S, et al. Molecular dynamics simulation of the interaction between dense-phase carbon dioxide and the myosin heavy chain [J]. Journal of CO2 Utilization, 2017, 21: 270–279. doi: 10.1016/j.jcou.2017.07.025
    [15] CHAIX E, GUILLAUME C, GUILLARD V. Oxygen and carbon dioxide solubility and diffusivity in solid food matrices: a review of past and current knowledge [J]. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(3): 261–286. doi: 10.1111/crf3.2014.13.issue-3
    [16] CHAIX E, GUILLAUME C, GONTARD N, et al. Diffusivity and solubility of CO2 in dense solid food products [J]. Journal of Food Engineering, 2015, 166: 1–9. doi: 10.1016/j.jfoodeng.2015.05.023
    [17] 任广跃, 张伟, 张乐道, 等. 多孔介质常压冷冻干燥质热耦合传递数值模拟 [J]. 农业机械学报, 2016, 47(3): 214–220

    REN G Y, ZHANG W, ZHANG L D, et al. Numerical simulation of mass and heat transfer of porous media during atmospheric freeze drying [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 214–220
    [18] CHANDRASEKARAN S, RAMANATHAN S, BASAK T. Microwave food processing—a review [J]. Food Research International, 2013, 52(1): 243–261. doi: 10.1016/j.foodres.2013.02.033
    [19] National Institute of Standards and Technology (NIST) [DB/OL]. [2018–11–15]. https://webbook.nist.gov/chemistry/fluid/
    [20] 周尚文, 王红岩, 薛华庆, 等. 页岩过剩吸附质量与绝对吸附质量的差异及页岩气储量计算新方法 [J]. 天然气工业, 2016, 36(1): 12–20

    ZHOU S W, WANG H Y, XUE H Q, et al. Difference between excess and absolute adsorption capacity of shale and a new shale gas reserve calculation method [J]. Natural Gas Industry, 2016, 36(1): 12–20
    [21] PINI R, OTTIGER S, BURLINI L, et al. Sorption of carbon dioxide, methane and nitrogen in dry coals at high pressure and moderate temperature [J]. International Journal of Greenhouse Gas Control, 2010, 4(1): 90–101. doi: 10.1016/j.ijggc.2009.10.019
    [22] TANG X, RIPEPI N. High pressure supercritical carbon dioxide adsorption in coal: adsorption model and thermodynamic characteristics [J]. Journal of CO2 Utilization, 2017, 18: 189–197. doi: 10.1016/j.jcou.2017.01.011
    [23] 李全中, 倪小明, 王延斌, 等. 超临界状态下煤岩吸附/解吸二氧化碳的实验 [J]. 煤田地质与勘探, 2014, 42(3): 36–39 doi: 10.3969/j.issn.1001-1986.2014.03.008

    LI Q Z, NI X M, WANG Y B, et al. The experimental study on the adsorption/desorption of carbon dioxide in the coal under supercritical condition [J]. Coal Geology & Exploration, 2014, 42(3): 36–39 doi: 10.3969/j.issn.1001-1986.2014.03.008
    [24] 刘圣鑫, 钟建华, 马寅生, 等. 页岩中气体的超临界等温吸附研究 [J]. 煤田地质与勘探, 2015, 43(3): 45–50 doi: 10.3969/j.issn.1001-1986.2015.03.009

    LIU S X, ZHONG J H, MA Y S, et al. Super-critical isothermal adsorption of gas in shale [J]. Coal Geology & Exploration, 2015, 43(3): 45–50 doi: 10.3969/j.issn.1001-1986.2015.03.009
    [25] GENSTERBLUM Y, HEMERT P V, BILLEMONT P, et al. European inter-laboratory comparison of high pressure CO2 sorption isotherms II: natural coals [J]. International Journal of Coal Geology, 2010, 84(2): 115–124. doi: 10.1016/j.coal.2010.08.013
    [26] 张帆, 刘香禺, 李相臣, 等. 一种精确计算甲烷在页岩上真实吸附质量的方法: CN201610482070.4 [P]. 2016.
    [27] 杨李慧, 郑伟中, 孙伟振, 等. 超临界CO2在聚氨酯体系中溶解扩散行为的分子动力学模拟研究 [J]. 石油化工, 2018, 47(1): 1–7 doi: 10.12053/j.issn.1008-2565.2018.01.001

    YANG L H, ZHENG W Z, SUN W Z, et al. Molecular dynamics simulation to investigate the solubility and diffusion of supercritical CO2 in polyurethane systems [J]. Petrochemical Technology, 2018, 47(1): 1–7 doi: 10.12053/j.issn.1008-2565.2018.01.001
    [28] LI, M S, HUANG X Y, LIU H S, et al. Solubility prediction of supercritical carbon dioxide in 10 polymers using radial basis function artificial neural network based on chaotic self-adaptive particle swarm optimization and K-harmonic means [J]. RSC Advances, 2015, 5(56): 45520–45527. doi: 10.1039/C5RA07129A
    [29] 李武广, 杨胜来, 陈峰, 等. 温度对页岩吸附解吸的敏感性研究 [J]. 矿物岩石, 2012, 32(2): 115–120 doi: 10.3969/j.issn.1001-6872.2012.02.015

    LI W G, YANG S L, CHEN F, et al. The sensitivity study of shale gas adsorption and desorption with rising reservoir temperature [J]. Journal of Mineral Petro, 2012, 32(2): 115–120 doi: 10.3969/j.issn.1001-6872.2012.02.015
    [30] ROSS D J K, BUSTIN R M. Shale gas potential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada [J]. Bulletin of Canadian Petroleum Geology, 2007, 55(1): 51–75. doi: 10.2113/gscpgbull.55.1.51
    [31] 周理, 李明, 周亚平. 超临界甲烷在高表面活性炭上的吸附测量及其理论分析 [J]. 中国科学(B辑), 2000, 30(1): 49–56

    ZHOU L, LI M, ZHOU Y P. Adsorption measurement and theoretical analysis of supercritical methane on high surface activated carbon [J]. Science in China (Series B), 2000, 30(1): 49–56
    [32] KANEKO K, MURATA K. An analytical method of micropore filling of a supercritical gas [J]. Adsorption-journal of the International Adsorption Society, 1997, 3(3): 197–208. doi: 10.1007/BF01650131
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  7239
  • HTML全文浏览量:  4352
  • PDF下载量:  31
出版历程
  • 收稿日期:  2018-11-15
  • 修回日期:  2019-01-05

目录

    /

    返回文章
    返回