混凝土材料动态压缩强度的应变率强化规律

高光发

高光发. 混凝土材料动态压缩强度的应变率强化规律[J]. 高压物理学报, 2017, 31(3): 261-270. doi: 10.11858/gywlxb.2017.03.007
引用本文: 高光发. 混凝土材料动态压缩强度的应变率强化规律[J]. 高压物理学报, 2017, 31(3): 261-270. doi: 10.11858/gywlxb.2017.03.007
GAO Guang-Fa. Effect of Strain-Rate Hardening on Dynamic Compressive Strength of Plain Concrete[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 261-270. doi: 10.11858/gywlxb.2017.03.007
Citation: GAO Guang-Fa. Effect of Strain-Rate Hardening on Dynamic Compressive Strength of Plain Concrete[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 261-270. doi: 10.11858/gywlxb.2017.03.007

混凝土材料动态压缩强度的应变率强化规律

doi: 10.11858/gywlxb.2017.03.007
基金项目: 

国家自然科学基金 11472008

国家自然科学基金 11202206

中国博士后科学基金 2011M501057

“力学”浙江省重中之重学科开放基金 xklx1513

中央高校基本科研业务费专项资金 30915118801

详细信息
    作者简介:

    高光发(1980-), 男, 博士, 教授, 主要从事爆炸与冲击动力学、波动力学研究. E-mail:gfgao@ustc.edu.cn

  • 中图分类号: O347.3

Effect of Strain-Rate Hardening on Dynamic Compressive Strength of Plain Concrete

  • 摘要: 混凝土材料的动态压缩强度具有明显的应变率效应,而且在低、高应变率下压缩强度的动态强化因子(Dynamic Increase Factor,DIF)与应变率的关系具有明显的区别。参考近30余年相关文献中大量的混凝土动态压缩实验数据,结合理论分析,探讨了在不同应变率阶段混凝土压缩强度DIF的变化规律,分析准静态压缩强度对压缩强度DIF的影响规律。最后对实验结果进行拟合,得到混凝土材料在不同应变率区间内压缩强度DIF的预测表达式。研究表明:混凝土材料的压缩强度DIF随着应变率的增加呈递增趋势,具有相似的线性关系;压缩强度DIF曲线按照斜率变化分为3个阶段,且在高应变率下斜率最大;不同准静态压缩强度的混凝土DIF随应变率变化的规律有少许区别,但它们之间没有明显的界限,DIF随应变率递增的趋势与准静态压缩强度没有明显的联系。

     

  • 图  混凝土材料压缩强度的应变率效应[3]

    Figure  1.  Effect of strain rate on compressive strength of plain concrete[3]

    图  混凝土材料压缩强度的应变率效应(Ⅱ)

    Figure  2.  Effect of strain rate on compressive strength of plain concrete (Ⅱ)

    图  不同研究情况下应变率的量级

    Figure  3.  Magnitude of strain rates expected for different loading cases

    图  低应变率下混凝土材料压缩强度的应变率效应

    Figure  4.  Effect of strain rate on compressive strength of plain concrete at low strain rates

    图  低应变率下混凝土材料压缩强度的DIF与应变率的关系

    Figure  5.  DIF of compressive strength vs.strain rate of plain concrete at low strain rates

    图  高应变率下混凝土材料压缩强度的应变率效应

    Figure  6.  Effect of strain rate on compressive strength of plain concrete at high strain rates

    图  高应变率下混凝土材料压缩强度的DIF

    Figure  7.  DIF of compressive strength of plain concrete at high strain rates

    图  高应变率下不同强度混凝土材料压缩强度的DIF

    Figure  8.  DIF of compressive strength of plain concrete with different static compressive strengths at high strain rates

    图  高应变率下不同强度混凝土材料压缩强度的DIF(Ⅱ)

    Figure  9.  DIF of compressive strength of plain concrete with different static compressive strengths at high strain rates (Ⅱ)

    图  10  高应变率下混凝土材料压缩强度的DIF与拟合曲线

    Figure  10.  Data points and fitting curve of DIF of compressive strength for plain concrete at high strain rates

    图  11  混凝土材料压缩强度的DIF-应变率拟合曲线

    Figure  11.  Fitting curve of DIF of compressive strength vs.strain rate for plain concrete

  • [1] ABRAM D A.Effect of rate of application of load on the compressive strength of concrete [J].Am Soc Test Mater, 1917, 17(2):364-377.
    [2] FU H C, ERKI M A, SECKIN M.Review of effects of loading rate on concrete in compression [J].J Struct Eng, 1991, 117(12):3645-3659. doi: 10.1061/(ASCE)0733-9445(1991)117:12(3645)
    [3] BISCHOFF P H, PERRY S H.Compressive behaviour of concrete at high strain rates [J].Mater Struct, 1991, 24(6):425-450. doi: 10.1007/BF02472016
    [4] EIBL J, SCHMIDT-HURTIENNE B.Strain-rate-sensitive constitutive law for concrete [J].J Eng Mech, 1999, 125(12):1411-1420. doi: 10.1061/(ASCE)0733-9399(1999)125:12(1411)
    [5] COMMITTEE EURO-INTERNATIONAL DU BETON.Concrete structures under impact and impulsive loading [Z].Bulletin d'Information, Lausanne, 1988.
    [6] COMMITTEE EURO-INTERNATIONAL DU BETON.CEB-FIP model code 1990 [M].Lausanne:Committee Euro-International du Beton, 1993.
    [7] RIEDEL W, THOMA K, HIERMAIER S.Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C]// Proceeding of 9th International Symposium on Interaction of the Effect of Munitions with Structures.Berlin-Strausberg, Germany, 1999: 315-322. https://wenku.baidu.com/view/140fe7dbac51f01dc281e53a580216fc700a533a.html
    [8] LI Q M, MENG H.About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test [J].Int J Solids Struct, 2003, 40(2):343-360. doi: 10.1016/S0020-7683(02)00526-7
    [9] LU Y B, LI Q M.About the dynamic uniaxial tensile strength of concrete-like materials [J].Int J Impact Eng, 2011, 38(4):171-180. doi: 10.1016/j.ijimpeng.2010.10.028
    [10] MIHASHI H, WITTMANN F H.Stochastic approach to study the influence of rate of loading on strength of concrete [J].HERON, 1980, 25(3):73-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0520071206690439
    [11] HOLMQUIST T J, JOHNSON G R.A computational constitutive model for glass subjected to large strains, high strain rates and high pressures [J].J Appl Mech, 2011, 78(5):051003. doi: 10.1115/1.4004326
    [12] FILIATRAULT A.Stress-strain behavior of reinforcing steel and concrete under seismic strain rates and low temperatures [J].Mater Struct, 2005, 34(238):235-239. doi: 10.1617/13597
    [13] SHKOLNIK I E.Evaluation of dynamic strength of concrete from results of static tests [J].J Eng Mech, 1996, 122(12):1133-1138. doi: 10.1061/(ASCE)0733-9399(1996)122:12(1133)
    [14] TANG T, MALVERN L E, JENKINS D A.Rate effects in uniaxial dynamic compression of concrete [J].J Eng Mech, 1992, 118(1):108-124. doi: 10.1061/(ASCE)0733-9399(1992)118:1(108)
    [15] TEDESCO J W, ROSS C A.Strain-rate-dependent constitutive equations for concrete [J].J Pressure Vessel Technol, 1998, 120(4):398-405. doi: 10.1115/1.2842350
    [16] GROTE D L, PARK S W, ZHOU M.Dynamic behavior of concrete at high strain rates and pressures:Ⅰ.experimental characterization [J].Int J Impact Eng, 2001, 25(9):869-886. doi: 10.1016/S0734-743X(01)00020-3
    [17] ZHOU X Q, HAO H.Modelling of compressive behaviour of concrete-like materials at high strain rate [J].Int J Solids Struct, 2008, 45(17):4648-4661. doi: 10.1016/j.ijsolstr.2008.04.002
    [18] XU H, WEN H M.Semi-empirical equations for the dynamic strength enhancement of concrete-like materials [J].Int J Impact Eng, 2013, 60:76-81. doi: 10.1016/j.ijimpeng.2013.04.005
    [19] SONG Z.Computational mesoscale modelling of concrete material under high strain rate loading [D].Edinburgh: University of Edinburgh, 2013. https://www.era.lib.ed.ac.uk/handle/1842/7637
    [20] SONG Z, LU Y.Mesoscopic analysis of concrete under excessively high strain rate compression and implications on interpretation of test data [J].Int J Impact Eng, 2012, 46:41-55. doi: 10.1016/j.ijimpeng.2012.01.010
    [21] PARKS P R, MENZIES J B.The effect of rate of loading upon the static and fatigue strengths of plain concrete in compression [J].Mag Concr Res, 1973, 25(83):73-80. doi: 10.1680/macr.1973.25.83.73
    [22] HAO Y, HAO H.Numerical evaluation of the influence of aggregates on concrete compressive strength at high strain rate [J].Int J Prot Struct, 2011, 2(2):177-206. doi: 10.1260/2041-4196.2.2.177
    [23] AFFES R, DELENNE J Y, MONERIE Y, et al.Tensile strength and fracture of cemented granular aggregates [J].Eur Phys J E, 2012, 35(11):117. doi: 10.1140/epje/i2012-12117-7
    [24] EVANS R H.Effect of rate of loading on the mechanical properties of some materials [J].J Inst Civ Eng, 1942, 18(7):296-306. doi: 10.1680/ijoti.1942.13813
    [25] HUGHES B P, WATSON A J.Compressive strength and ultimate strain of concrete under impact loading [J].Mag Concr Res, 1978, 30(105):189-199. doi: 10.1680/macr.1978.30.105.189
    [26] KLEPACZKO J R.Behavior of rock-like materials at high strain rates in compression [J].Int J Plast, 1990, 6(4):415-432. doi: 10.1016/0749-6419(90)90011-3
    [27] FORQUIN P, GARY G, GATUINGT F.A testing technique for concrete under confinement at high rates of strain [J].Int J Impact Eng, 2008, 35(6):425-446. doi: 10.1016/j.ijimpeng.2007.04.007
    [28] ZHENG S, HAUSSLER-COMBE U, EIBL J.New approach to strain rate sensitivity of concrete in compression [J].J Eng Mech, 1999, 125(12):1403-1410. doi: 10.1061/(ASCE)0733-9399(1999)125:12(1403)
    [29] SIERAKOWSKI R L, ADELI H.The dynamic behavior of concrete materials [J].Le Journal de Physique Colloques, 1985, 46(C5):81-89. https://www.researchgate.net/publication/45848272_THE_DYNAMIC_BEHAVIOR_OF_CONCRETE_MATERIALS
    [30] RIISGAARD B, NGO T, MENDIS P, et al.Dynamic increase factors for high performance concrete in compression using split Hopkinson pressure bar [C]//6th International Conference on Fracture Mechanics of Concrete and Concrete Structures, 2007.
    [31] PAJA K M.The influence of the strain rate on the strength of concrete taking into account the experimental techniques [J].Architect Civil Eng Environ, 2011, 3:77-86. http://cn.bing.com/academic/profile?id=01ea7c7e44550342e018fa23a00e9b05&encoded=0&v=paper_preview&mkt=zh-cn
    [32] MALVAR L J, CRAWFORD J E.Dynamic increase factors for concrete: ADA500715 [R].Naval Facilities Engineering Service Center, 1998.
    [33] DARGEL H J.Zur rechnerischen analyse von stahl-betontragwerken unter stossartiger beanspruchung [D].Germany: Darmstadt University, 1984.
    [34] DILGER W H, KOCH R, KOWALCZYK R.Ductility of plain and confined concrete under different strain rates [J].ACI J Proc, 1984, 81(1):73-81. http://cn.bing.com/academic/profile?id=6159343e4918b3f7428705ed3082c499&encoded=0&v=paper_preview&mkt=zh-cn
    [35] GRAN J K, FLORENCE A L, COLTON J D.Dynamic triaxial tests of high-strength concrete [J].J Eng Mech, 1989, 115(5):891-904. doi: 10.1061/(ASCE)0733-9399(1989)115:5(891)
    [36] YAN D, LIN G.Influence of initial static stress on the dynamic properties of concrete [J].Cem Concr Compos, 2008, 30(4):327-333. doi: 10.1016/j.cemconcomp.2007.11.004
    [37] GARY G, BAILLY P.Behaviour of quasi-brittle material at high strain rate:experiment and modeling [J].Eur J Mech, 1998, 17(3):403-420. doi: 10.1016/S0997-7538(98)80052-1
    [38] LU Y, XU K.Modelling of dynamic behaviour of concrete materials under blast loading [J].Int J Solids Struct, 2004, 41(1):131-143. doi: 10.1016/j.ijsolstr.2003.09.019
    [39] ZHOU X Q, HAO H.Modelling of compressive behaviour of concrete-like materials at high strain rate [J].Int J Solids Struct, 2008, 45(17):4648-4661. doi: 10.1016/j.ijsolstr.2008.04.002
    [40] MALVERN L E, ROSS C A.Dynamic response of concrete and concrete structures: ADA173082 [R].Gainesville: University of Florida, 1985.
    [41] ROSS C A.Crack patterns resulting from high strain-rate tests on concrete: ADA260240 [R].Air Base Survivability Branch, 1992.
    [42] ROSS C A, TEDESCO J W, KUENNEN S T.Effects of strain rate on concrete strength [J]. ACI Mater J, 1995, 92(1):37-47. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_a28617d535b91b4d16bf48512a07e322
    [43] BISCHOFF P H, PERRY S H.Impact behavior of plain concrete loaded in uniaxial compression [J].J Eng Mech, 1995, 121(6):685-693. doi: 10.1061/(ASCE)0733-9399(1995)121:6(685)
    [44] RUIZ G, ZHANG X X, POVEDA E, et al.Fracture behaviour of high-strength concrete at different loading rates [J].Fract Mech Concr Concr Struct, 2010, 7:445-450. http://www.sciencedirect.com/science/article/pii/S0734743X09000803
    [45] MU Z C, DANCYGIER A N, ZHANG W, et al.Revisiting the dynamic compressive behavior of concrete-like materials [J].Int J Impact Eng, 2012, 49:91-102. doi: 10.1016/j.ijimpeng.2012.05.002
    [46] HAO Y, HAO H, LI Z X.Influence of end friction confinement on impact tests of concrete material at high strain rate [J].Int J Impact Eng, 2013, 60:82-106. doi: 10.1016/j.ijimpeng.2013.04.008
    [47] SCHWER L E.Strain rate induced strength enhancement in concrete: much ado about nothing [C]//7th European LS-DYNA Conference, 2009.
    [48] KOTSOVOS M D, PAVLOVIC M N.Discussion:impact behavior of plain concrete loaded in uniaxial compression [J].J Eng Mech, 1997, 123(7):763-763. doi: 10.1061/(ASCE)0733-9399(1997)123:7(763)
    [49] ELMER W, TACIROGLU E, MCMICHAEL L.Dynamic strength increase of plain concrete from high strain rate plasticity with shear dilation [J].Int J Impact Eng, 2012, 45:1-15. doi: 10.1016/j.ijimpeng.2012.01.003
    [50] LI Q M, LU Y B, MENG H.Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests.Part Ⅱ:numerical simulations [J].Int J Impact Eng, 2009, 36(12):1335-1345. doi: 10.1016/j.ijimpeng.2009.04.010
    [51] TOKYAY M, OZDEMIR M.Specimen shape and size effect on the compressive strength of higher strength concrete [J].Cem Concr Res, 1997, 27(8):1281-1289. doi: 10.1016/S0008-8846(97)00104-X
    [52] YI S T, YANG E I, CHOI J C.Effect of specimen sizes, specimen shapes, and placement directions on compressive strength of concrete [J].Nucl Eng Des, 2006, 236(2):115-127. doi: 10.1016/j.nucengdes.2005.08.004
    [53] YAZICI S, INAN SEZER G.The effect of cylindrical specimen size on the compressive strength of concrete [J].Build Environ, 2007, 42(6):2417-2420. doi: 10.1016/j.buildenv.2006.06.014
    [54] DEL VISO J R, CARMONA J R, RUIZ G.Shape and size effects on the compressive strength of high-strength concrete [J].Cem Concr Res, 2008, 38(3):386-395. doi: 10.1016/j.cemconres.2007.09.020
    [55] PARK S W, XIA Q, ZHOU M.Dynamic behavior of concrete at high strain rates and pressures:Ⅱ.numerical simulation [J].Int J Impact Eng, 2001, 25(9):887-910. doi: 10.1016/S0734-743X(01)00021-5
  • 加载中
图(11)
计量
  • 文章访问数:  6022
  • HTML全文浏览量:  2746
  • PDF下载量:  58
出版历程
  • 收稿日期:  2016-08-11
  • 修回日期:  2016-12-06

目录

    /

    返回文章
    返回