Volume 31 Issue 3
Apr 2017
Turn off MathJax
Article Contents
ZHANG Pin-Liang, GONG Zi-Zheng, CAO Yan, LI Yu, XU Kun-Bo, MU Yong-Qiang, WU Qiang, SONG Guang-Ming. Macro- and Micro-Damage Behaviors of 47Zr45Ti5Al3V Alloy in Hypervelocity Impact[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 231-238. doi: 10.11858/gywlxb.2017.03.004
Citation: ZHANG Pin-Liang, GONG Zi-Zheng, CAO Yan, LI Yu, XU Kun-Bo, MU Yong-Qiang, WU Qiang, SONG Guang-Ming. Macro- and Micro-Damage Behaviors of 47Zr45Ti5Al3V Alloy in Hypervelocity Impact[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 231-238. doi: 10.11858/gywlxb.2017.03.004

Macro- and Micro-Damage Behaviors of 47Zr45Ti5Al3V Alloy in Hypervelocity Impact

doi: 10.11858/gywlxb.2017.03.004
  • Received Date: 07 Nov 2016
  • Rev Recd Date: 23 Dec 2016
  • To assess the suitability of 47Zr45Ti5Al3V alloy used in the future spacecraft in a space debris environment, we performed single and repeated hypervelocity impact experiments on a laser driven mini-flyer system.The crater depth in the recovered target was measured by a surface profile meter.The relationship between the crater depth and the velocity of flyer and the relevance of the crater depth and impact frequency were obtained.We also studied the microstructural changes and micro-damage behaviors of 47Zr45Ti5Al3V alloy using a scanning electron microscope and a transmission electron microscope.The results show that there are no micro-cracks, micro-voids, adiabatic shear bands or dynamic recrystallization in the region adjacent to the crater.In addition, the X-ray diffraction pattern of the bottom of the crater reveals that α and β phases coexist and αβ phase transition occurs, suggesting that the 47Zr45Ti5Al3V alloy exhibits good characteristics of structural stability and mechanical properties after hypervelocity impact, and it is a potential structural material for improving protection against orbital debris impacts on the future spacecraft.

     

  • loading
  • [1]
    BELK C A, ROBINSON J H, ALEXANDER M B, et al.Meteoroids and orbital debris: effects on spacecraft: NASA-RP-1408[R].Huntsville: NASA Marshall Space Flight Center, 1997.
    [2]
    POLMEAR I J.Light alloys[M].London:Edward Arnold Publications, 1981.
    [3]
    JING R, LIANG S X, LIU C Y, et al.Structure and mechanical properties of Ti-6Al-4V alloy after zirconium addition[J].Mat Sci Eng A, 2012, 552:295-300. doi: 10.1016/j.msea.2012.05.043
    [4]
    LIANG S X, YIN L X, MA M Z, et al.A multi-component Zr alloy with comparable strength and higher plasticity than Zr-based bulk metallic glasses[J].Mat Sci Eng A, 2013, 561:13-16. doi: 10.1016/j.msea.2012.10.061
    [5]
    KONDO R, SUYALATU, TSUTSUMI Y, et al.Microstructure and mechanical properties of Pt-added and Pd-added Zr-20Nb alloys and their metal release in 1 mass% lactic acid solution[J].Mat Sci Eng C, 2011, 31(5):900-905. doi: 10.1016/j.msec.2011.02.008
    [6]
    王杰, 张宏伟, 王爱民, 等.一种新型锆钛合金的动态力学行为研究[J].金属学报, 2012, 48(5):636-640. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201491700

    WANG J, ZHANG H W, WANG A M, et al.Investigation of dynamic mechanical behavior of a new Zr-Ti alloy[J].Acta Metallurgica Sinica, 2012, 48(5):636-640. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201491700
    [7]
    刘崧, 覃金贵, 陈荣, 等.新型锆钛合金的动态拉伸力学性能与微观断裂机制试验研究[J].航天器环境工程, 2013, 30(3):310-315. doi: 10.3969/j.issn.1673-1379.2013.03.016

    LIU S, QIN J G, CHEN R, et al.Tests of dynamic tensile properties and microscopic fragment mechanism for a new zirconium-titanium alloy[J].Spacecraft Environment Engineering, 2013, 30(3):310-315. doi: 10.3969/j.issn.1673-1379.2013.03.016
    [8]
    ZHANG P L, GONG Z Z, JI G F, et al.Shock compression of the new 47Zr45Ti5Al3V alloys up to 200 GPa[J].Chin Phys Lett, 2013, 30(6):066401. doi: 10.1088/0256-307X/30/6/066401
    [9]
    TANAKA K, NISHIDA M, OGAWA H, et al.Hypervelocity crater formation in aluminum alloys at low temperatures[J].Int J Impact Eng, 2008, 35(12):1821-1826. doi: 10.1016/j.ijimpeng.2008.07.043
    [10]
    ZHEN L, ZOU D L, XU C Y, et al.Microstructure evolution of adiabatic shear bands in AM60B magnesium alloy under ballistic impact[J].Mat Sci Eng A, 2010, 527(21):5728-5733. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8616dcc273388e25ecb18fa15334a612
    [11]
    MORITOH T, MATSUOKA S, OGURA T, et al.Dynamic failure of steel under hypervelocity impact of polycarbonate up to 9 km/s[J].J Appl Phys, 2003, 93(10):5983-5988. doi: 10.1063/1.1569979
    [12]
    曹燕, 牛锦超, 牟永强, 等.CAST激光驱动微小飞片及其超高速撞击效应研究进展[J].航天器环境工程, 2015, 32(2):162-175. doi: 10.3969/j.issn.1673-1379.2015.02.005

    CAO Y, NIU J C, MU Y Q, et al.Recent progresses of laser-driven flyer technique and micro-space debris hypervelocity impact tests in China Academy of Space Technology[J].Spacecraft Environment Engineering, 2015, 32(2):162-175. doi: 10.3969/j.issn.1673-1379.2015.02.005
    [13]
    经福谦.实验物态方程导引[M].第2版.北京:科学出版社, 1999.

    JING F Q.Introduction to experimental equation of state[M].2nd ed.Beijing:Science Press, 1999.
    [14]
    MEYERS M A.Dynamic behavior of materials[M].New York:John Wiley & Sons Inc, 1994.
    [15]
    HAYASHIDA K B, ROBINSON J H. Single wall penetration equations: NASA-TM-103565 [R].Huntsville: NASA Marshall Space Flight Center, 1991.
    [16]
    COUR-PALAIS B G.Hypervelocity impact investigations and meteoroid shielding experience related to Apollo and Skylab: NASA-S-82-05009[R].Houston: NASA Johnson Space Center, 1984. https://www.researchgate.net/publication/4673383_Hypervelocity_Impact_Investigations_and_Meteoroid_Shielding_Experience_Related_to_Apollo_and_Skylab
    [17]
    CHRISTIANSEN E L.Shield sizing and response equations: NASA-TM-105527[R].Houston: NASA Johnson Space Center, 1991.
    [18]
    LI G A, ZHEN L, LIN C, et al.Deformation localization and recrystallization in TC4 alloy under impact condition[J].Mat Sci Eng A, 2005, 395(1):98-101. http://www.sciencedirect.com/science/article/pii/S0921509304014492
    [19]
    IYER K A, POORMON K L, DEACON R M, et al.Hypervelocity impact response of Ti-6Al-4V and commercially pure titanium[J].Procedia Engineering, 2013, 58:127-137. doi: 10.1016/j.proeng.2013.05.016
    [20]
    ZOU D L, ZHEN L, ZHU Y, et al.Deformed microstructure and mechanical properties of AM60B magnesium alloy under hypervelocity impact at a velocity of 4 km·s-1[J].Mat Sci Eng A, 2010, 527(15):3323-3328. doi: 10.1016/j.msea.2010.02.037
    [21]
    ZOU D L, ZHEN L, ZHU Y, et al.Deformed microstructure evolution in AM60B Mg alloy under hypervelocity impact at a velocity of 5 km·s-1[J].Mater Design, 2010, 31(8):3708-3715. doi: 10.1016/j.matdes.2010.03.010
    [22]
    SELLARS C M.Recrystallization of metals during hot deformation[J].Phil Trans Roy Soc Lon Ser A, 1978, 288(1350):147-158. doi: 10.1098/rsta.1978.0010
    [23]
    MURRAY J L.Phase diagrams of binary titanium alloys[M].Materials Park:ASM International, 1987:340.
    [24]
    KAD B K, GEBERT J M, PEREZ-PRADO M T, et al.Ultrafine-grain-sized zirconium by dynamic deformation[J].Acta Mater, 2006, 54(16):4111-4127. doi: 10.1016/j.actamat.2006.03.053
    [25]
    KOBAYASHI S, MATSUZAKI A, NAKAI K, et al.Decomposition processes of β phase in a Ti-15Zr-4Nb-4Ta alloy[J].Mater Trans, 2004, 45(5):1624-1628. doi: 10.2320/matertrans.45.1624
    [26]
    KOBAYASHI S, NAKAGAWA S, NAKAI K, et al.Phase decomposition in a Ti-13Nb-13Zr alloy during aging at 600 ℃[J].Mater Trans, 2002, 43(12):2956-2963. doi: 10.2320/matertrans.43.2956
    [27]
    MOFFAT D L, LARBALESTIER D C.The compctition between the alpha and omega phases in aged Ti-Nb alloys[J].Metall Trans A, 1988, 19(7):1687-1694. doi: 10.1007/BF02645136
    [28]
    BORISOVA E A, CHEN S Q.Metallography of titanium alloys[M].Beijing:National Defense Industry Press, 1986:90.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views(6596) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return