氧气浓度对气相爆轰合成纳米碳球的影响

李晓杰 杨瑞 闫鸿浩

李晓杰, 杨瑞, 闫鸿浩. 氧气浓度对气相爆轰合成纳米碳球的影响[J]. 高压物理学报, 2017, 31(1): 15-20. doi: 10.11858/gywlxb.2017.01.003
引用本文: 李晓杰, 杨瑞, 闫鸿浩. 氧气浓度对气相爆轰合成纳米碳球的影响[J]. 高压物理学报, 2017, 31(1): 15-20. doi: 10.11858/gywlxb.2017.01.003
LI Xiao-Jie, YANG Rui, YAN Hong-Hao. Influence of Oxygen Concentration on Carbon Nanospheres Prepared by Gaseous Detonation[J]. Chinese Journal of High Pressure Physics, 2017, 31(1): 15-20. doi: 10.11858/gywlxb.2017.01.003
Citation: LI Xiao-Jie, YANG Rui, YAN Hong-Hao. Influence of Oxygen Concentration on Carbon Nanospheres Prepared by Gaseous Detonation[J]. Chinese Journal of High Pressure Physics, 2017, 31(1): 15-20. doi: 10.11858/gywlxb.2017.01.003

氧气浓度对气相爆轰合成纳米碳球的影响

doi: 10.11858/gywlxb.2017.01.003
详细信息
    作者简介:

    李晓杰(1963—),男,博士,教授, 主要从事纳米材料爆轰制备、爆炸焊接研究.E-mail:923309973@qq.com

    通讯作者:

    杨瑞(1991—),男,硕士,主要从事气相爆轰合成纳米材料研究.E-mail:1040001753@qq.com

  • 中图分类号: O389

Influence of Oxygen Concentration on Carbon Nanospheres Prepared by Gaseous Detonation

  • 摘要: 以氧气和苯为反应物,采用气相爆轰法制备纳米碳球是一种新兴的碳纳米材料的制备方法,通过X射线衍射(XRD)进行物相分析,并通过透射电镜(TEM)进行形貌分析,观察了产物的晶粒大小。结果表明,纳米碳球的尺寸在30~50 nm之间,随着氧气浓度的增加,产物晶粒尺寸变小,分散性也变好,团聚程度降低。同时发现,反应物的初始浓度对气相爆轰合成纳米材料有重要影响。此外,还对气相爆轰合成纳米碳球的形成机理进行了讨论。

     

  • 图  燃烧气体与燃烧产物平衡组分的关系

    Figure  1.  Relationship of combustion gas and combustion products

    图  不同氧气浓度比下气相爆轰合成纳米碳球的X射线衍射图谱

    Figure  2.  XRD patterns of C prepared by gaseous detonation with different O2 concentrations

    图  样品1~样品7的TEM图

    Figure  3.  TEM images of Sample 1-Sample 7

    图  样品3的HETEM图

    Figure  4.  HETEM image of Sample 3

    图  样品2的晶粒分布直方图

    Figure  5.  Particle size distribution histogram of Sample 2

    图  气相爆轰合成纳米碳球可能形成机理

    Figure  6.  Possible formation mechanism of gas detonation synthesis for carbon nanospheres

    表  1  爆炸产物主要成分分布

    Table  1.   Distribution of main products from explosion

    V(O2)/V(C6H6)OBMain ingredients of explosion products
    1.0-3.0-CO(g), H2(g), C(s)
    3.0-7.5-CO2(g), CO(g), H2O(g), H2(g)
    7.5-8.0+CO2(g), H2O(g), O2(g)
    下载: 导出CSV

    表  2  实验时的合成条件和反应参数

    Table  2.   Synthesis condition for samples and reaction parameters

    No.Oxygen tension
    /(MPa)
    Volume of
    benzene/(mL)
    Benzene vapor partial
    pressure/(MPa)
    n(O2/C6H6)
    10.0484.00.018 832.55
    20.0454.00.018 832.39
    30.0404.00.018 832.12
    40.0304.00.018 831.59
    50.0303.40.016 001.87
    60.0283.40.016 001.75
    70.0273.40.016 001.69
    80.0203.40.016 001.25
    下载: 导出CSV

    表  3  不同工况下的晶粒尺寸

    Table  3.   Crystalline size under different conditions

    No.2θ/(°)n(O2/C6H6)Crystalline
    size/(nm)
    126.42.5538
    226.42.3942
    326.42.1243
    426.41.5945
    526.31.8733
    626.31.7537
    726.31.6939
    81.25Incomplete detonation
    下载: 导出CSV
  • [1] CAI P J, FENG L.Synthesis of hollow carbon spheres by one convenient method[J].Mater Chem Phys, 2008, 108(1):1-3. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4837d13816cf59838713ff7ac9c8494a
    [2] 沈曾发.新型碳材料[M].北京:化学工业出版社, 2003.

    SHEN Z F.New carbon materials[M].Beijing:Chemical Industry Press, 2003.
    [3] LIU Y C, QIU X P, HUANG Y Q, et al.Mesocarbon microbeads supported Pt-Ru catalystsfor electrochemical oxidation of methanol [J].J Power Sources, 2002, 111(1):160-164. doi: 10.1016/S0378-7753(02)00298-7
    [4] ZHANG C G, LI J J, LIU E, et al.Synthesis of hollow carbon nano-onions and their use for electrochemical hehydrogen storage [J].Carbon, 2012, 50(10):3513-3521. doi: 10.1016/j.carbon.2012.03.019
    [5] GENG B Y, MA J Z, DU Q B, et al.Synthesis of hollow carbon nanospheres through a ZnSe nanoparticle template route[J].Mater Sci Eng A, 2007, 466(1):96-100. http://www.sciencedirect.com/science/article/pii/S0921509307006879
    [6] TANG K, WHITE R J, MU X K, et al.Hollow carbon nanospheres with a high rate capability for lithium-based batteries [J].Chem Sus Chem, 2012, 5(2):400-403. doi: 10.1002/cssc.201100609
    [7] TANG K, FU L J, WHITE R J, et al.Hollow carbon nanospheres with superior rate capability for sodium-based batteries [J].Adv Energ Mater, 2012, 2(7):873-877. doi: 10.1002/aenm.201100691
    [8] HAN F D, YAN B, BAI Y J.Preparation of carbon nano-onions and their application as anode materials for rechargeable lithium-ion batteries [J].J Phys Chem C, 2011, 115(18):8923-8927. doi: 10.1021/jp2007599
    [9] 季晶晶, 王红强, 张经济, 等.水热法制备Sn/C球复合材料及其电化学性能[J].粉末冶金材料科学与工程, 2013, 18(4):599-603. doi: 10.3969/j.issn.1673-0224.2013.04.022

    JI J J, WANG H Q, ZHANG J J, et al.Eletrochemical performance of Sn/C ball composite materials prepared by hydrothermal method[J].Powder Metallurgy Materials Science and Engineering, 2013, 18(4):599-603. doi: 10.3969/j.issn.1673-0224.2013.04.022
    [10] PECH D, BRUNET M, DUROU H, et al.Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon [J].Nature Nanotech, 2010, 5(9):651-654. doi: 10.1038/nnano.2010.162
    [11] 徐惠娟, 熊翔, 易茂中, 等.薄毡叠层炭/炭复合材料的高温导热性能[J].中南大学学报(自然科学版), 2008, 39(3):500-505. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200803016.htm

    XU H J, XIONG X, YI M Z, et al.Thermal conductivity properties of carbon/carbon composites with thin felt laminate at high temperature[J].Journal of Central South University (Natural Science Edition), 2008, 39(3):500-505. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200803016.htm
    [12] UGARTE D.Morphology and structure of graphitic soot particles generated in arc-discharge C60 production[J].Chem Phys Lett, 1992, 198(6):596-602. doi: 10.1016/0009-2614(92)85035-9
    [13] WANG Q, CAO F Y, CHEN Q W, et al.Preparation of carbon micro-spheres by hydrothermal treatment of methylcellulose sol[J].Mater Lett, 2005, 59(28):3738-3741. doi: 10.1016/j.matlet.2005.06.046
    [14] 李新海, 何方勇, 郭华军, 等.F-掺杂LiMn2O4的合成及电化学性能[J].中国有色金属学报, 2008, 18(1):55-58. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb200801010

    LI X H, HE F Y, GUO H J, et al.Synthesis and electrochemical performance of LiMn2O4 doped with F[J].The Chinese Journal of Nonferrous Metals, 2008, 18(1):55-58. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb200801010
    [15] YOON S B, SOHN K, KIM J Y, et al.Fabrication of carbon capsules with hollow macroporous core/mesoporous shell structures[J].Adv Mater, 2002, 14(1):19-21. doi: 10.1002/(ISSN)1521-4095
    [16] SHARON M, YASE K, MUKHOPADHYAY K, et al.Spongy carbon nanobeads-a new material[J].Carbon, 1998, 36(5):507-511. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025288623/
    [17] 文富国, 尹彩流, 黄启忠, 等.碳化钙-氯仿体系制备碳纳米球及其结构表征[J].广西民族大学学报(自然科学版), 2009, 15(1):67-69. doi: 10.3969/j.issn.1673-8462.2009.01.020

    WEN F G, YIN C L, HUANG Q Z, et al.Calcium carbide-chloroform system preparation of carbon nanotubes and their structural characterization[J].Journal of Guangxi University for Nationalities(Natural Science Edition), 2009, 15(1):67-69. doi: 10.3969/j.issn.1673-8462.2009.01.020
    [18] SOGABE T, OKADA O, KURODA K, et al.Improvement in properties and air oxidation resistance of carbon materials by boron oxide impregnation[J].Carbon, 1997, 35(1):67-72. doi: 10.1016/S0008-6223(96)00128-5
    [19] KROTO H W, MCKAY K.The formation of quasi-icosahedral spiral shell carbon particles[J].Nature, 1988, 331(228):328-331. doi: 10.1038/331328a0
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  7507
  • HTML全文浏览量:  3122
  • PDF下载量:  139
出版历程
  • 收稿日期:  2016-03-10
  • 修回日期:  2016-05-25

目录

    /

    返回文章
    返回