超高压对蛋白质的影响

李仁杰 廖小军 胡小松 吴继红

引用本文:
Citation:

超高压对蛋白质的影响

    通讯作者: 吴继红, wjhcau@hotmail.com

Effects of High Hydrostatic Pressure on Proteins

    Corresponding author: WU Ji-Hong, wjhcau@hotmail.com
  • 摘要: 在现有的超高压对蛋白质影响研究的基础上,详细地总结了超高压对蛋白质的分子体积、非共价键和分子结构的影响。在超高压作用下,蛋白质的分子体积被压缩变小;压力通过改变蛋白质分子的氢键、离子键、水合作用和疏水相互作用来影响蛋白质结构;低于800 MPa的压力会造成蛋白质分子的二级、三级和四级结构的改变,其中四级结构对压力最敏感,三级结构次之,二级结构的改变较小;高于8 GPa的压力会影响蛋白质分子的一级结构。
  • [1] Zhou L Y, Liao H M, Zhang W J, et al. Review of high pressure technologies for food processing [J]. Journal of Chinese Institute of Food Science and Technology, 2009, 9(4): 165-169. (in Chinese)
    [2] 周林燕, 廖红梅, 张文佳, 等. 食品高压技术研究进展和应用现状 [J]. 中国食品学报, 2009, 9(4): 165-169.
    [3] Liao X J. HHP has bright prospect in fruit and vegetable processing [J]. Agriculture Engineering Technology, 2009(9): 36-38. (in Chinese)
    [4] 廖小军. 超高压技术在果蔬加工中大有可为 [J]. 农业工程技术, 2009(9): 36-38.
    [5] Shangguan L J, Ma Y K, Cui F J, et al. Effects of high pressure processing on the activity and the conformation of horseradish peroxidase [J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 475-480. (in Chinese)
    [6] 上官丽娟, 马永昆, 崔凤杰, 等. 高压处理对辣根过氧化物酶活性及构象的影响 [J]. 高压物理学报, 2011, 25(5): 475-480.
    [7] Ma H J, Zhou G H, Yu X L, et al. Effects of combined high pressure and thermal treatment on protease activities in beef muscle [J]. Chinese Journal of High Pressure Physics, 2011, 25(1): 89-96. (in Chinese)
    [8] 马汉军, 周光宏, 余小领, 等. 高压与加热协同处理对牛肌肉中蛋白酶活性的影响 [J]. 高压物理学报, 2011, 25(1): 89-96.
    [9] Chen X Q, Zhang Y J, Zhang S K, et al. Effect of high pressure processing on polyphenol oxidase from trametes trogii [J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 235-240. (in Chinese)
    [10] 陈小强, 章银军, 张士康, 等. 超高压处理对毛栓菌多酚氧化酶的影响 [J]. 高压物理学报, 2012, 26(2): 235-240.
    [11] Mozhaev V V, Heremans K, Frank J, et al. High pressure effects on protein structure and function [J]. Proteins Struct Funct Bioinf, 1996, 24(1): 81-91.
    [12] Silva J L, Foguel D, Royer C A. Pressure provides new insights into protein folding, dynamics and structure [J]. Trends Biochem Sci, 2001, 26(10): 612-618.
    [13] Boonyaratanakornkit B B, Park C B, Clark D S. Pressure effects on intra- and intermolecular interactions within proteins [J]. Biochim Biophys Acta, 2002, 1595(1/2): 235-249.
    [14] Eisenmenger M J, Reyes-De-Corcuera J I. High pressure enhancement of enzymes: A review [J]. Enzyme Microb Technol, 2009, 45(5): 331-347.
    [15] Gross M, Jaenicke R. Proteins under pressure: The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes [J]. Eur J Biochem, 1994, 221(2): 617-630.
    [16] Bu P Y, Xia Q. General Chemistry [M]. Beijing: Science Press, 2009: 253. (in Chinese)
    [17] 卜平宇, 夏泉. 普通化学 [M]. 北京: 科学出版社, 2009: 253.
    [18] Bridgman P W. The Physics of High Pressure [M]. London: George Bell Sons Ltd, 1931: 450.
    [19] Gekko K, Hasegawa Y. Compressibility-structure relationship of globular proteins [J]. Biochemistry, 1986, 25(21): 6563-6571.
    [20] Prehoda K E, Mooberry E S, Markley J L. Pressure denaturation of proteins: Evaluation of compressibility effects [J]. Biochemistry, 1998, 37(17): 5785-5790.
    [21] Vidugiris G J A, Royer C A. Determination of the volume changes for pressure-induced transitions of apomyoglobin between the native, molten globule, and unfolded states [J]. Biophys J, 1998, 75(1): 463-470.
    [22] Seemann H, Winter R, Royer C A. Volume, expansivity and isothermal compressibility changes associated with temperature and pressure unfolding of Staphylococcal nuclease [J]. J Mol Biol, 2001, 307(4): 1091-1102.
    [23] Roche J, Caro J A, Norberto D R, et al. Cavities determine the pressure unfolding of proteins [J]. Proc Natl Acad Sci, 2012, 109(18): 6945-6950.
    [24] Visser A, Li T M, Drickamer H G, et al. Effect of pressure upon the fluorescence of various flavodoxins [J]. Biochemistry, 1977, 16(22): 4879-4882.
    [25] Zipp A, Kauzmann W. Pressure denaturation of metmyoglobin [J]. Biochemistry, 1973, 12(21): 4217-4228.
    [26] Kornblatt J A, Hui Bon Hoa G, Heremans K. Pressure-induced effects on cytochrome oxidase: The aerobic steady state [J]. Biochemistry, 1988, 27(14): 5122-5128.
    [27] Fuentes E J, Wand A J. Local stability and dynamics of apocytochrome b562 examined by the dependence of hydrogen exchange on hydrostatic pressure [J]. Biochemistry, 1998, 37(28): 9877-9883.
    [28] Collins M D, Quillin M L, Hummer G, et al. Structural rigidity of a large cavity-containing protein revealed by high-pressure crystallography [J]. J Mol Biol, 2007, 367(3): 752-763.
    [29] Abe F, Kato C, Horikoshi K. Pressure-regulated metabolism in microorganisms [J]. Trends Microbiol, 1999, 7(11): 447-453.
    [30] Heremans L, Heremans K. Raman spectroscopic study of the changes in secondary structure of chymotrypsin: Effect of pH and pressure on the salt bridge [J]. Biochim Biophys Acta, 1989, 999(2): 192-197.
    [31] Hei D J, Clark D S. Pressure stabilization of proteins from extreme thermophiles [J]. Appl Environ Microbiol, 1994, 60(3): 932-939.
    [32] Day R, Garca A E. Water penetration in the low and high pressure native states of ubiquitin [J]. Proteins Struct Funct Bioinf, 2008, 70(4): 1175-1184.
    [33] Dadarlat V M, Post C B. Decomposition of protein experimental compressibility into intrinsic and hydration shell contributions [J]. Biophys J, 2006, 91(12): 4544-4554.
    [34] Wang J Y. Biochemistry [M]. Beijing: Higher Education Press, 2002: 626. (in Chinese)
    [35] 王镜岩. 生物化学 [M]. 北京: 高等教育出版社, 2002: 626.
    [36] Hayert M, Perrier-Cornet J M, Gervais P. A simple method for measuring the pH of acid solutions under high pressure [J]. J Phys Chem A, 1999, 103(12): 1785-1789.
    [37] Peng X, Jonas J, Silva J L. Molten-globule conformation of Arc repressor monomers determined by high-pressure 1H NMR spectroscopy [J]. Proc Natl Acad Sci, 1993, 90(5): 1776-1780.
    [38] Imai T, Sugita Y. Dynamic correlation between pressure-induced protein structural transition and water penetration [J]. J Phys Chem B, 2010, 114(6): 2281-2286.
    [39] Collins M D, Hummer G, Quillin M L, et al. Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation [J]. Proc Natl Acad Sci, 2005, 102(46): 16668-16671.
    [40] Hdoux A, Guinet Y, Paccou L. Analysis of the mechanism of lysozyme pressure denaturation from Raman spectroscopy investigations, and comparison with thermal denaturation [J]. J Phys Chem B, 2011, 115(20): 6740-6748.
    [41] Grigera J R, McCarthy A N. The behavior of the hydrophobic effect under pressure and protein denaturation [J]. Biophys J, 2010, 98(8): 1626-1631.
    [42] Ando N, Barstow B, Baase W A, et al. Structural and thermodynamic characterization of T4 lysozyme mutants and the contribution of internal cavities to pressure denaturation [J]. Biochemistry, 2008, 47(42): 11097-11109.
    [43] Akasaka K, Li H, Yamada H, et al. Pressure response of protein backbone structure: Pressure-induced amide 15N chemical shifts in BPTI [J]. Protein Sci, 1999, 8(10): 1946-1953.
    [44] Girard E, Marchal S, Perez J, et al. Structure-function perturbation and dissociation of tetrameric urate oxidase by high hydrostatic pressure [J]. Biophys J, 2010, 98(10): 2365-2373.
    [45] Le Tilly V, Sire O, Alpert B, et al. An infrared study of 2H-bond variation in myoglobin revealed by high pressure [J]. Eur J Biochem, 1992, 205(3): 1061-1065.
    [46] Kangur L, Timpmann K, Freiberg A. Stability of integral membrane proteins under high hydrostatic pressure: The LH2 and LH3 antenna pigment-protein complexes from photosynthetic bacteria [J]. J Phys Chem B, 2008, 112(26): 7948-7955.
    [47] Hummer G, Garde S, Garca A E, et al. The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins [J]. Proc Natl Acad Sci, 1998, 95(4): 1552-1555.
    [48] Hemley R J. Effects of high pressure on molecules [J]. Annu Rev Phys Chem, 2000, 51: 763-800.
    [49] Chen W, Heymann G, Kursula P, et al. Effects of gigapascal level pressure on protein structure and function [J]. J Phys Chem B, 2012, 116(3): 1100-1110.
    [50] Subirade M, Loupil F, Allain A, et al. Effect of dynamic high pressure on the secondary structure of -lactoglobulin and on its conformational properties as determined by Fourier transform infrared spectroscopy [J]. Int Dairy J, 1998, 8(2): 135-140.
    [51] Ngarize S, Herman H, Adams A, et al. Comparison of changes in the secondary structure of unheated, heated, and high-pressure-treated -lactoglobulin and ovalbumin proteins using fourier transform raman spectroscopy and self-deconvolution [J]. J Agric Food Chem, 2004, 52(21): 6470-6477.
    [52] Rouget J B, Schroer M A, Jeworrek C, et al. Unique features of the folding landscape of a repeat protein revealed by pressure perturbation [J]. Biophys J, 2010, 98(11): 2712-2721.
    [53] Takeda N, Kato M, Taniguchi Y. Pressure- and thermally-induced reversible changes in the secondary structure of ribonuclease: A studied by FT-IR spectroscopy [J]. Biochemistry, 1995, 34(17): 5980-5987.
    [54] Yan L F, Sun Z R. Structure of Proteins [M]. Beijing: Tsinghua University Press, 1999: 334. (in Chinese)
    [55] 阎隆飞, 孙之荣. 蛋白质分子结构 [M]. 北京: 清华大学出版社, 1999: 334.
    [56] Knorr D, Heinz V, Buckow R. High pressure application for food biopolymers [J]. Biochim Biophys Acta, 2006, 1764(3): 619-631.
    [57] Tschirret-Guth R A, Hoa G H B, de Montellano P R O. Pressure-induced deformation of the cytochrome P450cam active site [J]. J Am Chem Soc, 1998, 120(15): 3590-3596.
    [58] Tschirret-Guth R A, Koo L S, Hoa G H, et al. Reversible pressure deformation of a thermophilic cytochrome P450 enzyme (CYP119) and its active-site mutants [J]. J Am Chem Soc, 2001, 123(15): 3412-3417.
    [59] Li H, Yamada H, Akasaka K. Effect of pressure on the tertiary structure and dynamics of folded basic pancreatic trypsin inhibitor [J]. Biophys J, 1999, 77(5): 2801-2812.
    [60] Peng X, Jonas J, Silva J L. Molten-globule conformation of Arc repressor monomers determined by high-pressure 1H NMR spectroscopy [J]. Proc Natl Acad Sci, 1993, 90(5): 1776-1780.
    [61] King L, Weber G. Conformational drift of dissociated lactate dehydrogenases [J]. Biochemistry, 1986, 25(12): 3632-3637.
    [62] Silva J L, Miles E W, Weber G. Pressure dissociation and conformational drift of the beta dimer of tryptophan synthase [J]. Biochemistry, 1986, 25(19): 5780-5786.
    [63] Ruan K, Weber G. Dissociation of yeast hexokinase by hydrostatic pressure [J]. Biochemistry, 1988, 27(9): 3295-3301.
    [64] Panda M, Ybarra J, Horowitz P M. High hydrostatic pressure can probe the effects of functionally related ligands on the quaternary structures of the chaperonins GroEL and GroES [J]. J Biol Chem, 2001, 276(9): 6253-6259.
    [65] Paladini A A Jr, Weber G. Pressure-induced reversible dissociation of enolase [J]. Biochemistry, 1981, 20(9): 2587-2593.
    [66] Royer C A, Weber G, Daly T J, et al. Dissociation of the lactose repressor protein tetramer using high hydrostatic pressure [J]. Biochemistry, 1986, 25(25): 8308-8315.
    [67] Rietveld A W, Ferreira S T. Deterministic pressure dissociation and unfolding of triose phosphate isomerase: Persistent heterogeneity of a protein dimer [J]. Biochemistry, 1996, 35(24): 7743-7751.
    [68] Ruan K, Weber G. Hysteresis and conformational drift of pressure-dissociated glyceraldehydephosphate dehydrogenase [J]. Biochemistry, 1989, 28(5): 2144-2153.
    [69] Peng X, Jonas J, Silva J L. High-pressure NMR study of the dissociation of Arc repressor [J]. Biochemistry, 1994, 33(27): 8323-8329.
  • [1] 李汴生苏芳萍朱悦夫阮征李丹丹钱江高永焱 . 超高压处理对不同果蔬结构和性质的影响. 高压物理学报, 2018, 32(3): 035301-1-035301-11. doi: 10.11858/gywlxb.20170668
    [2] 苏磊 . 超高压条件下室温离子液体结构和性质的研究进展. 高压物理学报, 2014, 28(1): 1-10. doi: 10.11858/gywlxb.2014.01.001
    [3] 李汴生曾庆孝彭志英陈伯暖梁棣华 . 高压处理后大豆分离蛋白溶解性和流变特性的变化及其机理. 高压物理学报, 1999, 13(1): 22-29 . doi: 10.11858/gywlxb.1999.01.004
    [4] 谢慧明黄训端潘见曾庆梅王海翔蒋业雷 . 超高压对枯草杆菌胞外蛋白酶的影响. 高压物理学报, 2007, 21(1): 95-102 . doi: 10.11858/gywlxb.2007.01.016
    [5] 韩奇钢班庆初易政陈梦露仲济伦杨文珂张强 . 超高压碳化钨顶砧新结构的设计与研究. 高压物理学报, 2014, 28(6): 686-690. doi: 10.11858/gywlxb.2014.06.007
    [6] 赵宏强吴金鑫张苑怡蓝蔚青刘书成孙晓红谢晶 . 超高压处理对冷藏鲈鱼片品质及组织结构变化的影响. 高压物理学报, 2017, 31(4): 494-504. doi: 10.11858/gywlxb.2017.04.019
    [7] 周晓平杨向东刘锦超 . 超高压水的分子动力学模拟. 高压物理学报, 2009, 23(4): 310-314 . doi: 10.11858/gywlxb.2009.04.012
    [8] 黄丽孙远明潘科陈柏暖梁棣文谌国莲余红英 . 超高压处理对荔枝果肉中两种酶和可溶性蛋白的影响. 高压物理学报, 2005, 19(2): 179-183 . doi: 10.11858/gywlxb.2005.02.014
    [9] 蓝蔚青陈梦玲孙晓红赵宏强谢晶 . 超高压结合竹醋液处理对冷藏鲈鱼片品质和蛋白特性的影响. 高压物理学报, 2019, 33(1): 015301-1-015301-9. doi: 10.11858/gywlxb.20180609
    [10] 曾庆梅潘见谢慧明杨毅徐惠群 . 西瓜汁的超高压杀菌效果研究. 高压物理学报, 2004, 18(1): 70-74 . doi: 10.11858/gywlxb.2004.01.012
    [11] 冯云春徐依吉赵付国 . 超高压淹没射流破岩规律实验研究. 高压物理学报, 2005, 19(1): 66-70 . doi: 10.11858/gywlxb.2005.01.012
    [12] 顾惠成李凤英王积方陈良辰 . 百吉帕超高压下Ag的X光衍射实验和研究. 高压物理学报, 1994, 8(1): 69-72 . doi: 10.11858/gywlxb.1994.01.012
    [13] 曹霞敏毕秀芳李仁杰董鹏胡小松廖小军 . 超高压和热杀菌对草莓浊汁及清汁品质的影响. 高压物理学报, 2014, 28(5): 631-640. doi: 10.11858/gywlxb.2014.05.019
    [14] 张静赵凤胡小松廖小军 . 食品微生物对超高压处理的逆境响应. 高压物理学报, 2012, 26(3): 343-350. doi: 10.11858/gywlxb.2012.03.016
    [15] 章中胡小松廖小军张燕 . 温压结合超高压处理对芽孢杀灭作用的研究进展. 高压物理学报, 2013, 27(1): 147-152. doi: 10.11858/gywlxb.2013.01.021
    [16] 易俊洁董鹏丁国微胡小松廖小军张燕 . 鲍鱼超高压脱壳工艺的优化及品质研究. 高压物理学报, 2014, 28(2): 239-246. doi: 10.11858/gywlxb.2014.02.017
    [17] 武艳梅陈芹芹甘芝霖王继恩倪元颖 . 超高压提取富含诺卡酮柚皮精油工艺的研究. 高压物理学报, 2013, 27(5): 785-792. doi: 10.11858/gywlxb.2013.05.021
    [18] 蒋兵刘凤霞孙恬胡小松廖小军 . 超高压和热杀菌对胡萝卜汁品质的影响. 高压物理学报, 2014, 28(1): 120-128. doi: 10.11858/gywlxb.2014.01.020
    [19] 曾庆梅潘见谢慧明杨毅黄训端 . 超高压处理对多酚氧化酶活性的影响. 高压物理学报, 2004, 18(2): 144-148 . doi: 10.11858/gywlxb.2004.02.009
    [20] 夏远景刘志军李宁陈淑花邓记松刘学武李志义 . 超高压处理对海参自溶酶活性影响的研究. 高压物理学报, 2009, 23(5): 377-384 . doi: 10.11858/gywlxb.2009.05.009
  • 加载中
计量
  • 文章访问数:  540
  • 阅读全文浏览量:  10
  • PDF下载量:  199
出版历程
  • 收稿日期:  2012-06-16
  • 录用日期:  2012-08-24
  • 刊出日期:  2014-08-15

超高压对蛋白质的影响

    通讯作者: 吴继红, wjhcau@hotmail.com
  • 1. 中国农业大学食品科学与营养工程学院,国家果蔬加工工程技术研究中心,农业部果蔬加工重点开放实验室,北京 100083

摘要: 在现有的超高压对蛋白质影响研究的基础上,详细地总结了超高压对蛋白质的分子体积、非共价键和分子结构的影响。在超高压作用下,蛋白质的分子体积被压缩变小;压力通过改变蛋白质分子的氢键、离子键、水合作用和疏水相互作用来影响蛋白质结构;低于800 MPa的压力会造成蛋白质分子的二级、三级和四级结构的改变,其中四级结构对压力最敏感,三级结构次之,二级结构的改变较小;高于8 GPa的压力会影响蛋白质分子的一级结构。

English Abstract

参考文献 (69)

目录

    /

    返回文章
    返回