磁驱动飞片的三维数值模拟及分析

张旭平 赵剑衡 谭福利 王桂吉 罗斌强 种涛 孙承纬 刘仓理

张旭平, 赵剑衡, 谭福利, 王桂吉, 罗斌强, 种涛, 孙承纬, 刘仓理. 磁驱动飞片的三维数值模拟及分析[J]. 高压物理学报, 2014, 28(4): 483-488. doi: 10.11858/gywlxb.2014.04.015
引用本文: 张旭平, 赵剑衡, 谭福利, 王桂吉, 罗斌强, 种涛, 孙承纬, 刘仓理. 磁驱动飞片的三维数值模拟及分析[J]. 高压物理学报, 2014, 28(4): 483-488. doi: 10.11858/gywlxb.2014.04.015
ZHANG Xu-Ping, ZHAO Jian-Heng, TAN Fu-Li, WANG Gui-Ji, LUO Bin-Qiang, CHONG Tao, SUN Cheng-Wei, LIU Cang-Li. Three-Dimensional Numerical Simulation and Analysis of Magnetically Driven Flyer Plates[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 483-488. doi: 10.11858/gywlxb.2014.04.015
Citation: ZHANG Xu-Ping, ZHAO Jian-Heng, TAN Fu-Li, WANG Gui-Ji, LUO Bin-Qiang, CHONG Tao, SUN Cheng-Wei, LIU Cang-Li. Three-Dimensional Numerical Simulation and Analysis of Magnetically Driven Flyer Plates[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 483-488. doi: 10.11858/gywlxb.2014.04.015

磁驱动飞片的三维数值模拟及分析

doi: 10.11858/gywlxb.2014.04.015
基金项目: 国家自然科学基金科学仪器基础研究专项(10927201);国家自然科学基金青年科学基金(11002130);国家自然科学基金委员会-中国工程物理研究院(NSAF)联合基金重点项目(11176002);中国工程物理研究院科学技术基金重点项目(2010A0201006, 2011A0101001)
详细信息
    作者简介:

    张旭平(1988-), 男, 硕士, 主要从事磁驱动发射技术研究.E-mail:xupingzhang@sina.cn

    通讯作者:

    赵剑衡(1969-), 男, 博士, 研究员, 博士生导师, 主要从事强激光破坏机理、爆轰物理、冲击动力学、超高速发射和超高压加载技术研究.E-mail:jianh_zhao@caep.cn

  • 中图分类号: O521.3

Three-Dimensional Numerical Simulation and Analysis of Magnetically Driven Flyer Plates

  • 摘要: 磁驱动准等熵加载和超高速飞片发射是一种全新的冲击动力学和高能量密度物理实验加载技术。利用三维磁流体动力学软件,模拟了磁驱动飞片的物理过程,计算得到的飞片自由面速度与实验结果符合较好。通过计算飞片横断面的温度、密度和磁场分布,得到了加载过程中磁扩散速度和飞片的剩余厚度。飞片加载过程中飞片边缘的卷曲变形严重,分析认为是由电流和磁场分布的不均匀导致飞片边侧受斜上方较大的加载力所致,并且电流分布的不均匀是主要因素。实验设计时,可利用极板构型的变化调节加载面的电流分布,从而提高飞片的平面性,减小边侧的卷曲变形。

     

  • 图  磁驱动飞片模型示意图

    Figure  1.  Physical model of magnetically driven flyer plate

    图  计算模型

    Figure  2.  Calculation model

    图  自由面速度剖面和电流波形图(Shot-475)

    Figure  3.  Free surface velocity and current profile (Shot-475)

    图  自由面速度剖面和电流波形图(Shot-248)

    Figure  4.  Free surface velocity and current profile (Shot-248)

    图  不同时刻飞片横断面的磁场分布(Shot-248)

    Figure  5.  Magnetic field profile of cross section of flyer plate at different moments (Shot-248)

    图  飞片横断面的温度和密度分布(Shot-248)

    Figure  6.  Temperature and density distributions of cross section of flyer plate (Shot-248)

    图  飞片宽度方向各测点在x方向的位移(Shot-248)

    Figure  7.  x-displacement of the measurement points along the width direction (Shot-248)

    图  飞片边侧受力分析示意图

    Figure  8.  Schematic of force analysis for the side edge of a flyer plate

    表  1  Johnson-Cook本构方程参数

    Table  1.   Parameters of Johnson-Cook constitutive equation

    Material Density/(g/cm3) A/(MPa) B/(MPa) N C M
    Cu 8.96 90 292 0.31 0.025 1.09
    下载: 导出CSV

    表  2  Steinberg本构方程参数

    Table  2.   Parameters of Steinberg constitutive equation

    Material Density/(g/cm3) G0/(GPa) β n
    Al 2.75 28.6 310 0.185
    下载: 导出CSV

    表  3  Burgess电阻率模型参数

    Table  3.   Parameters of Burgess electrical resistivity model

    Material γ0 θm, 0/(eV) LF/(kJ/mol)
    Cu 2.00 0.117 0 0.130
    Al 2.13 0.080 4 0.107
    下载: 导出CSV
  • [1] 孙承纬, 赵剑衡, 王桂吉, 等.磁驱动准等熵平面压缩和超高速飞片发射实验技术原理、装置及应用[J].力学进展, 2012, 42(2): 206-218. http://d.wanfangdata.com.cn/Periodical/lxjz201202008

    Sun C W, Zhao J H, Wang G J, et al. Progress in magnetic loading techniques for isentropic compression experiments and ultra-high velocity flyer launching[J]. Advances in Mechanics, 2012, 42(2): 206-218. (in Chinese) http://d.wanfangdata.com.cn/Periodical/lxjz201202008
    [2] Hall C A, Knudson M D, Asay J R, et al. High velocity flyer plate launch capability on the Sandia Z accelerator[J]. Int J Impact Eng, 2001, 26: 275-287. doi: 10.1016/S0734-743X(01)00088-4
    [3] Hereil P L, Lassalle F, Avrillaud G. GEPI: An ice generator for dynamic material characterisation and hypervelocity impact[J]. AIP Conf Proc, 2004, 706: 1209-1212. doi: 10.1063/1.1780455
    [4] Ao T, Asay J R, Chantrenne S, et al. A compact strip-line pulsed power generator for isentropic compression experiments[J]. Rev Sci Instrum, 2008, 79(1): 013903. doi: 10.1063/1.2827509
    [5] Lemke R W, Knudson M D, Davis J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator[J]. Int J Impact Eng, 2011, 38(6): 480-485. doi: 10.1016/j.ijimpeng.2010.10.019
    [6] 赵剑衡, 孙承纬, 谭福利, 等.一维平面磁驱动等熵加载发射飞片技术[J].爆炸与冲击, 2005, 25(4): 303-308. http://d.wanfangdata.com.cn/Periodical/bzycj200504003

    Zhao J H, Sun C W, Tan F L, et al. Launch technique for isentropic compression flyer plates magnetically driven by using fast pulsed power[J]. Explosion and Shock Waves, 2005, 25(4): 303-308. (in Chinese) http://d.wanfangdata.com.cn/Periodical/bzycj200504003
    [7] 王桂吉, 王青松, 赵剑衡, 等. 10 km/s超高速宏观飞片发射技术研究进展[C]//第6届全国空间碎片学术交流会.成都, 2011: 551-559.

    Wang G J, Wang Q S, Zhao J H, et al. Research progress of 10 km/s hypervelocity macro-flyer launch technology[C]//Proceedings of the 6th National Conference on Space Debris. Chengdu, 2011: 551-559. (in Chinese)
    [8] Lemke R W, Knudson M D, Bliss D E, et al. Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments[J]. J Appl Phys, 2005, 98(7): 073530. doi: 10.1063/1.2084316
    [9] Lemke R W, Knudson M D, Robinson A C, et al. Self-consistent, two-dimensional, magnetohydrodynamic simulations of magnetically driven flyer plates[J]. Phys Plasmas, 2003, 10(5): 1867-1874. doi: 10.1063/1.1557530
    [10] Le Blanc G, Petit J, Chanal P Y, et al. Modelling the dynamic magneto-thermomechanical behaviour of materials using a multi-phase EOS[C]//The 7th European LS-DYNA Conference. Salzburg, Austria, 2009.
    [11] 王刚华, 孙承纬, 赵剑衡, 等.磁驱动平面飞片的一维磁流体力学计算[J].爆炸与冲击, 2008, 28(3): 261-264. http://d.wanfangdata.com.cn/Periodical/bzycj200803011

    Wang G H, Sun C W, Zhao J H, et al. One-dimensional, magnetohydrodynamic simulations of magnetically driven flyer plates[J]. Explosion and Shock Waves, 2008, 28(3): 261-264. (in Chinese) http://d.wanfangdata.com.cn/Periodical/bzycj200803011
    [12] 王桂吉, 蒋吉昊, 孙承纬, 等.磁驱动飞片的一维磁流体动力学数值研究[J].计算力学学报, 2008, 25(6): 776-781. http://d.wanfangdata.com.cn/Periodical/jslxxb200806007

    Wang G J, Jiang J H, Sun C W, et al. One dimensional magneto-hydrodynamic simulation of magnetically driven flyer plates[J]. Chinese Journal of Computational Mechanics, 2008, 25(6): 776-781. (in Chinese) http://d.wanfangdata.com.cn/Periodical/jslxxb200806007
    [13] Le Blanc G, Chanal P Y, Herei P L, et al. Ramp wave compression in a copper strip line: Comparison between MHD numerical simulations(LS-DYNA)and experimental results(GEPI device)[C]//The 10th International LS-DYNA Users Conference. Dearborn, USA, 2008.
    [14] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics. Hague, Netherlands, 1983.
    [15] Steinberg D J, Cochran S G, Guinan M W. A constitutive model for metals applicable at high-strain rate[J]. J Appl Phys, 1980, 51(3): 1498-1504. doi: 10.1063/1.327799
    [16] 孙承纬.磁驱动等熵压缩和高速飞片的实验技术[J].爆轰波与冲击波, 2005(3): 125-138.

    Sun C W. Experimental techniques of magnetically driven isentropic compression and high velocity flyer plates[J]. Detonation and Shock Waves, 2005(3): 125-138. (in Chinese)
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  7223
  • HTML全文浏览量:  2041
  • PDF下载量:  292
出版历程
  • 收稿日期:  2012-09-04
  • 修回日期:  2012-10-29

目录

    /

    返回文章
    返回