发酵与动态高压微射流对豆渣膳食纤维理化特性的影响

涂宗财 陈丽莉 王辉 尹月斌 阮传英 张兰 柳军凯 张璆

引用本文:
Citation:

发酵与动态高压微射流对豆渣膳食纤维理化特性的影响

    通讯作者: 涂宗财, tuzc_mail@aliyun.com

Effects of Fermentation and Dynamic High Pressure Microfluidization on Physicochemical Properties of Dietary Fiber in Soybean Residue

    Corresponding author: TU Zong-Cai, tuzc_mail@aliyun.com ;
  • 摘要: 采用乳酸菌发酵结合动态高压微射流(Dynamic High Pressure Microfluidization,DHPM)技术,对豆渣进行改性,探讨其对膳食纤维组成、水化性质、持油力、胆汁酸结合能力及阳离子交换能力的影响。结果表明:乳酸菌发酵和DHPM均可有效提高豆渣中可溶性膳食纤维的含量,并降低不可溶性膳食纤维的含量,使可溶性与不可溶性膳食纤维含量的比值最大达到1∶2.6;乳酸菌发酵和DHPM能明显改善膳食纤维的水化性质和持油力,但对阳离子交换能力的影响不显著;乳酸菌发酵使豆渣膳食纤维结合胆汁酸的能力下降,而DHPM则使之升高。乳酸菌发酵和DHPM可以作为提高膳食纤维生理功能的有效途径。
  • [1] Kushi L H, Meyer K A, Jacobs D R. Cereals, legumes, and chronic disease risk reduction: Evidence from epidemiologic studies [J]. Am J Clin Nutr, 1999, 70(Supplement): 451-458.
    [2] Chandalia M, Garg A, Lutjohann D, et al. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus [J]. N Engl J Med, 2000, 342(19): 1392-1398.
    [3] Bosaeus I. Fibre effects on intestinal functions (diarrhoea, constipation and irritable bowel syndrome) [J]. Clin Nutr Suppl, 2004, 1(2): 33-38.
    [4] Champ M, Langkilde A M, Brouns F, et al. Advances in dietary fibre characterisation. 1. Definition of dietary fibre, physiological relevance, health benefits and analytical aspects [J]. Nutr Res Rev, 2003, 16(1): 71-82.
    [5] Liu K S. Soybeans: Chemistry, Technology and Utilization [M]. Gaithersburg, Maryland, USA: Aspen Publishers Inc. , 1999: 25-113.
    [6] Goni I, Martin-Carron N. In vitro fermentation and hydration properties of commercial dietary fiber-rich supplements [J]. Nutr Res, 1998, 18(6): 1077-1089.
    [7] Jenkins D J, Kendall C W, Augustin L S, et al. Glycemic index: Overview of implications in health and disease [J]. Am J Clin Nutr, 2002, 76(1): 266-273.
    [8] Lukaczer D, Liska D J, Lerman R H, et al. Effect of a low glycemic index diet with soy protein and phytosterols on CVD risk factors in postmenopausal women [J]. Nutrition, 2006, 22(2): 104-113.
    [9] Grigelmo-Miguel N, Martin-Belloso O. Comparison of dietary fibre from by-products of processing fruits and greens and from cereals [J]. LWT-Food Sci Tech, 1999, 32(8): 503-508.
    [10] Sangnark A, Noomhorm A. Chemical, physical and baking properties of dietary fiber prepared from rice straw [J]. Food Res Int, 2004, 37(1): 66-74.
    [11] Raghavendra S N, Swamy S R, Rastogi N K, et al. Grinding characteristics and hydration properties of coconut residue: A source of dietary fiber [J]. J Food Eng, 2006, 72(3): 281-286.
    [12] Lambo A M, ste R, Nyman M E G L. Dietary fibre in fermented oat and barley -glucan rich concentrates [J]. Food Chem, 2005, 89(2): 283-293.
    [13] Tu Z C, Zhu X M, Chen G, et al. Effects of dynamic high-pressure microfluidization on the structure of waxy rice starch [J]. Spectroscopy and Spectral Analysis, 2010, 30(3): 834-837. (in Chinese)
    [14] 涂宗财, 朱秀梅, 陈钢, 等. 动态超高压微射流对糯米淀粉结构的影响 [J]. 光谱学与光谱分析, 2010, 30(3): 834-837.
    [15] Wan J, Liu C M, Lan H J, et al. Effects of dynamic instantaneous high pressure treatment on the enzymolysis rate of dietary fiber [J]. Chinese Journal of High Pressure Physics, 2008, 22(4): 439-444. (in Chinese)
    [16] 万婕, 刘成梅, 蓝海军, 等. 动态瞬时高压作用对膳食纤维酶解速度的影响 [J]. 高压物理学报, 2008, 22(4): 439-444.
    [17] Chen J, Liang R H, Liu W, et al. Degradation of high-methoxyl pectin by dynamic high pressure microfluidization and its mechanism [J]. Food Hydrocolloid, 2012, 28(1): 121-129.
    [18] Association of Official Analytical Chemists. Official Methods of Analysis (Method 991. 43) [M]. 16th Ed. Washington D C, USA: Association of Official Analytical Chemists, 1995.
    [19] Robertson J A, de Monredon F D, Dysseler P, et al. Hydration properties of dietary fibre and resistant starch: A European collaborative study [J]. LWT-Food Sci Tech, 2000, 33(2): 72-79.
    [20] Kahlon T S, Woodruff C L. In vitro binding of bile acids by rice bran, oat Bran, barley and -glucan enriched barley [J]. Cereal Chem, 2003, 80(3): 260-263.
    [21] Jimnez A, Rodrguez R, Fernndez-Caro I, et al. Dietary fibre content of table olives processed under different European styles: Study of physico-chemical characteristics [J]. J Sci Food Agr, 2000, 80(13): 1903-1908.
    [22] Liu C M. Instantaneous high pressure process: Its sterilization mechanisms and effect on quality improvement and property changes of dietary fiber [D]. Nanchang: Nanchang University, 2006: 91-92. (in Chinese)
    [23] 刘成梅. 瞬时高压作用的机制及杀菌和纤维改性研究 [D]. 南昌: 南昌大学, 2006: 91-92.
    [24] Johansson C G. Enzymatic, gravimetric analysis of dietary fibre [D]. Lund, Sweden: Lund University, 1987.
    [25] Cadden A M. Comparative effects of particle size reduction on physical structure and water binding properties of several plant fibers [J]. J Food Sci, 1987, 52(6): 1595-1599.
    [26] Li F. Modifying soybean dietary fiber by ultra high pressure treatment [J]. Soybean Science, 2008, 27(1): 141-144. (in Chinese)
    [27] 李凤. 超高压处理对大豆膳食纤维的改性 [J]. 大豆科学, 2008, 27(1): 141-144.
    [28] Yeh H Y, Su N W, Lee M H. Chemical compositions and physicochemical properties of the fiber-rich materials prepared from shoyu mash residue [J]. J Agric Food Chem, 2005, 53(11): 4361-4366.
    [29] Zhong Y G. Functional Food [M]. Beijing: Chemical Industry Press, 2004: 35-37. (in Chinese)
    [30] 钟耀广. 功能性食品 [M]. 北京: 化学工业出版社, 2004: 35-37.
    [31] Kahlon T S, Smith G E. In vitro binding of bile acids by bananas, peaches, pineapple, grapes, pears, apricots and nectarines [J]. Food Chem, 2007, 101(3): 1046-1051.
    [32] Cornfine C, Hasenkopf K, Eisner P, et al. Influence of chemical and physical modification on the bile acid binding capacity of dietary fibre from lupins (Lupinus angustifolius L. ) [J]. Food Chem, 2010, 122(3): 638-644.
    [33] Chau C F, Huang Y L. Comparison of the chemical composition and physicochemical properties of different fibers prepared from the peel of Citrus sinensis L. Cv. Liucheng [J]. J Agric Food Chem, 2003, 51(9): 2615-2618.
  • [1] 杜双奎李志西毋锐琴杨甲平 . 细菌纤维素菌株超高压诱变选育及其发酵培养基的优化. 高压物理学报, 2011, 25(1): 79-88 . doi: 10.11858/gywlxb.2011.01.013
    [2] 万婕刘成梅蓝海军涂宗财刘伟 . 动态瞬时高压作用对膳食纤维酶解速度的影响. 高压物理学报, 2008, 22(4): 439-444 . doi: 10.11858/gywlxb.2008.04.018
    [3] 万婕刘成梅李俶刘伟 . 动态高压微射流作用对膳食纤维结晶结构的影响. 高压物理学报, 2012, 26(6): 639-644. doi: 10.11858/gywlxb.2012.06.007
    [4] 罗舜菁汪志宇刘成梅万婕钟业俊龚二生徐欣源 . 动态高压微射流改性可溶性大豆多糖对大米淀粉理化性质的影响. 高压物理学报, 2014, 28(5): 617-624. doi: 10.11858/gywlxb.2014.05.017
    [5] 李俶李倩徐金龙刘成梅王召君 . 动态高压微射流对菠萝汁维生素C、总酚含量及其抗氧化性的影响. 高压物理学报, 2013, 27(6): 936-941. doi: 10.11858/gywlxb.2013.06.022
    [6] 刘伟李火坤刘成梅刘玮琳 . 基于FLUENT的动态高压微射流内部孔道流场的数值模拟. 高压物理学报, 2012, 26(1): 113-120. doi: 10.11858/gywlxb.2012.01.017
    [7] 刘伟钟业俊刘成梅谢明勇官斌尹曼王倩陈婷婷 . 动态高压微射流技术对木瓜蛋白酶活性的影响. 高压物理学报, 2010, 24(2): 129-135 . doi: 10.11858/gywlxb.2010.02.009
    [8] 王华申斯乐李志慧崔航王彦峰付欣欣杨帆常亮郑晓一邹广田 . 高压对米曲霉理化性质影响及诱变的研究. 高压物理学报, 2008, 22(3): 259-264 . doi: 10.11858/gywlxb.2008.03.006
    [9] 涂宗财张露王辉叶云花李志黄小琴 . 动态高压微射流提取对红薯叶黄酮抗氧化性的影响. 高压物理学报, 2013, 27(3): 431-438. doi: 10.11858/gywlxb.2013.03.018
    [10] 刘培玲张甫生白云飞胡小松沈群 . 高静压对淀粉结构及糊化性质的影响. 高压物理学报, 2010, 24(6): 472-480 . doi: 10.11858/gywlxb.2010.06.012
    [11] 刘伟刘玮琳刘成梅杨水兵郑会娟刘建华王建红 . 高压微射流制备纳米中链脂肪酸脂质体的研究. 高压物理学报, 2010, 24(4): 293-299 . doi: 10.11858/gywlxb.2010.04.009
    [12] 李胜华李金良王旭之 . 具有碳纤维材料环的超高压模具. 高压物理学报, 2021, 35(1): 013301-1-013301-7. doi: 10.11858/gywlxb.20200580
    [13] 李佐张凤玲廖大麟 . 高压下HBT晶体的弹性性质. 高压物理学报, 2020, 34(4): 041301-1-041301-9. doi: 10.11858/gywlxb.20190823
    [14] 王裴秦承森张树道刘超 . SPH方法对金属表面微射流的数值模拟. 高压物理学报, 2004, 18(2): 149-156 . doi: 10.11858/gywlxb.2004.02.010
    [15] 叶雁汪伟李作友李剑刘振清钟杰李军尚长水罗振雄李欣竹李泽仁 . 用高速摄影和脉冲同轴全息照相联合诊断微射流. 高压物理学报, 2009, 23(6): 471-475 . doi: 10.11858/gywlxb.2009.06.012
    [16] 胡永金何开华 . 高压下ZnTe的电子结构和光电性质. 高压物理学报, 2014, 28(6): 641-647. doi: 10.11858/gywlxb.2014.06.001
    [17] 贺春元高春晓李明郝爱民黄晓伟于翠铃张冬梅王月邹广田 . CdSe在高压下的电学性质及相变. 高压物理学报, 2008, 22(1): 39-42 . doi: 10.11858/gywlxb.2008.01.009
    [18] 武振羽曹立鲍忠兴柳翠霞李前树邹炳锁 . 纳米ZnO在高压下的性质与结构研究. 高压物理学报, 2003, 17(1): 45-49 . doi: 10.11858/gywlxb.2003.01.007
    [19] 王积方王汝菊何寿安 . 高压下非晶碳的弹性性质. 高压物理学报, 1988, 2(1): 34-41 . doi: 10.11858/gywlxb.1988.01.005
    [20] 雷慧茹张立宏 . 高压下ReN2的弹性性质. 高压物理学报, 2019, 33(4): 042401-1-042401-7. doi: 10.11858/gywlxb.20180647
  • 加载中
计量
  • 文章访问数:  1786
  • 阅读全文浏览量:  44
  • PDF下载量:  268
出版历程
  • 收稿日期:  2012-04-08
  • 录用日期:  2012-06-11
  • 刊出日期:  2014-02-15

发酵与动态高压微射流对豆渣膳食纤维理化特性的影响

    通讯作者: 涂宗财, tuzc_mail@aliyun.com
  • 1. 南昌大学食品科学与技术国家重点实验室,江西南昌 330047;
  • 2. 江西师范大学生命科学学院,江西南昌 330022

摘要: 采用乳酸菌发酵结合动态高压微射流(Dynamic High Pressure Microfluidization,DHPM)技术,对豆渣进行改性,探讨其对膳食纤维组成、水化性质、持油力、胆汁酸结合能力及阳离子交换能力的影响。结果表明:乳酸菌发酵和DHPM均可有效提高豆渣中可溶性膳食纤维的含量,并降低不可溶性膳食纤维的含量,使可溶性与不可溶性膳食纤维含量的比值最大达到1∶2.6;乳酸菌发酵和DHPM能明显改善膳食纤维的水化性质和持油力,但对阳离子交换能力的影响不显著;乳酸菌发酵使豆渣膳食纤维结合胆汁酸的能力下降,而DHPM则使之升高。乳酸菌发酵和DHPM可以作为提高膳食纤维生理功能的有效途径。

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回