动态高压微射流提取对红薯叶黄酮抗氧化性的影响

涂宗财 张露 王辉 叶云花 李志 黄小琴

引用本文:
Citation:

动态高压微射流提取对红薯叶黄酮抗氧化性的影响

    通讯作者: 涂宗财, tuzc_mail@yahoo.com.cn

Effects of Dynamic High Pressure Microfluidization (DHPM) Extraction on the Antioxidation of Flavonoids from Sweet Potato Leaves and Mechanism Studying

    Corresponding author: TU Zong-Cai, tuzc_mail@yahoo.com.cn ;
  • 摘要: 采用动态高压微射流(DHPM)辅助技术提取红薯叶黄酮,与传统乙醇提取法比较,研究DHPM对红薯叶黄酮抗氧化活性的影响,并通过高效液相色谱-质谱联用技术(HLPC-MS)技术对其机理进行了初步研究。实验结果显示,DHPM可以促进红薯叶细胞壁的破碎和展开,提高总黄酮的提取率,当处理压力为100 MPa时,总黄酮得率最高(5.440%0.006%),与传统浸提相比,得率提高了21.7%。HLPC-MS分析表明,DHPM可以提高提取黄酮的纯度和低极性分子的浓度,对于同一质量浓度的总黄酮样液,80、100 MPa压力下提取的黄酮样液的抗氧化活性较低,120 MPa压力处理所得样品(SF120)抗氧化活性最强,清除DPPH和OH的IC50值分别为15.99 mg/L和0.093 g/L。SF0、SF80和SF100中的主要黄酮类化合物为槲皮素、4',7-二甲氧基山奈酚、杨梅黄酮、商陆黄素和鼠李柠檬素,SF120的主要黄酮类化合物为槲皮素、杨梅黄酮和商陆黄素。
  • [1] Heim K E, Taglaferro A R, Bobilya D J, et al. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships [J]. J Nutr Biochem, 2002, 13(10): 572-584.
    [2] Liao W C, Lai Y C, Yuan M C, et al. Antioxidative activity of water extract of sweet potato leaves in Taiwan [J]. Food Chem, 2011, 127(3): 1224-1228.
    [3] Zhang J, Yue L, Hayat K, et al. Purification of flavonoid from Gingko biloba extract by zinc complexation method and its effect on antioxidant activity [J]. Sep Purif Technol, 2010, 71(3): 273-278.
    [4] Rumbaoa R G O, Cornago D F, Geronimo I M. Phenolic content and antioxidant capacity of philippine sweet potato (Ipompea batatas) varieties [J]. Food Chem, 2009, 113(4): 1133-1138.
    [5] Luo L P, Gao Y Y, Hong X E, et al. Study on anti-tumor effects of flavonoids extracted from sweet potato leaf, stalk and stem [J]. Food Science, 2006, 27(8): 248-250. (in Chinese)
    [6] 罗丽萍, 高荫榆, 洪雪娥, 等. 甘薯叶柄藤类黄酮的抗肿瘤作用研究 [J]. 食品科学, 2006, 27(8): 248-250.
    [7] Huang D J, Chen H J, Hou W C, et al. Active recombinant thioredoxin h protein with antioxidant activities from sweet potato (Ipomoea batatas [L. ] Lam Tainong 57) storage roots [J]. J Agric Food Chem, 2004, 52(15): 4720-4724.
    [8] Luo J G, Kong L Y. Study on flavonoids from leaf of Ipomoea batatas [J]. China Journal of Chinese Materia Medica, 2005, 30(7): 516-518. (in Chinese)
    [9] 罗建光, 孔令义. 巴西甘薯叶黄酮类成分的研究 [J]. 中国中药杂志, 2005, 30(7): 516-518.
    [10] Li W F, Tian C L, Huang M E, et al. Preliminary determination of flavonoids in sweet potato leaves and stems [J]. Chinese Agricultural Science Bulletin, 2005, 21(4): 119-121. (in Chinese)
    [11] 李文芳, 田春莲, 黄美娥, 等. 甘薯叶和茎中黄酮类化合物含量的初步测定 [J]. 中国农学通报, 2005, 21(4): 119-121.
    [12] Wan J, Liu C M, Lan H J, et al. Effects of dynamic instantaneous high pressure treatment on the enzymoysis rate of dietary fiber [J]. Chinese Journal of High Pressure Physics, 2008, 22(4): 439-444. (in Chinese)
    [13] 万婕, 刘成梅, 蓝海军, 等. 动态瞬时高压作用对膳食纤维酶解速度的影响 [J]. 高压物理学报, 2008, 22(4): 439-444.
    [14] Li Z, Tu Z C, Mao Y W, et al. Extraction of flavonoids from sweet potato leaves by dynamic high-pressure microfluidization technology [J]. Food Science, 2010, 31(24): 83-86. (in Chinese)
    [15] 李志, 涂宗财, 毛沅文, 等. 动态超高压微射流技术提取甘薯叶黄酮 [J]. 食品科学, 2010, 31(24): 83-86.
    [16] Liu W, Zhong Y J, Liu C M, et al. The effect of dynamic high pressure microfluidization on the activity of papain [J]. Chinese Journal of High Pressure Physics, 2010, 24(2): 129-135. (in Chinese)
    [17] 刘伟, 钟业俊, 刘成梅, 等. 动态高压微射流技术对木瓜蛋白酶活性的影响 [J]. 高压物理学报, 2010, 24(2): 129-135.
    [18] Liu W, Liu W L, Liu C M, et al. Preparation of medium chain fatty acids (MCFA) nano-liposome by means of high pressure microfluidization (HPM) [J]. Chinese Journal of High Pressure Physics, 2010, 24(4): 293-299. (in Chinese)
    [19] 刘伟, 刘玮琳, 刘成梅, 等. 高压微射流制备纳米中链脂肪酸脂质体的研究 [J]. 高压物理学报, 2010, 24(4): 293-299.
    [20] Liu W, Zhang Z Q, Liu C M, et al. The effect of dynamic high-pressure microfluidization on the activity, stability and conformation of trypsin [J]. Food Chem, 2010, 123(3): 616-621
    [21] Yi Z B, Yu Y, Liang Y Z, et al. In vitro antioxidant and antimicrobial activities of the extract of Pericarpium Citri Reticulatae of a new Citrus cultivar and its main flavonoids [J]. Food Sci Tech, 2008, 41(4): 597-603.
    [22] Naidu M M, Shyamala B N, Naik J P, et al. Chemical composition and antioxidant activity of the husk and endosperm of fenugreek seeds [J]. Food Sci Tech, 2011, 44(2): 451-456.
    [23] Koncic M Z, Kremer D, Gruz J, et al. Antioxidant and antimicrobial properties of Moltkia petraea (Tratt. ) Griseb. flower, leaf and stem infusions [J]. Food Chem Toxicol, 2010, 48(6): 1537-1542.
    [24] Zhan R, Kurban, Gou P, et al. Antioxidant activity of extracts from Leontopodium leontopodioides [J]. Food Science, 2010, 31(3): 153-159. (in Chinese)
    [25] 展锐, 库尔班, 苟萍, 等. 火绒草提取物抗氧化活性的研究 [J]. 食品科学, 2010, 31(3): 153-159.
    [26] Yu H X. Effect of dynamic high pressure microfluidization on the properties and structures of hemicellulose [D]. Nanchang: Nanchang University, 2008. (in Chinese)
    [27] 余海霞. 动态高压微射流对半纤维素性质和结构的影响 [D]. 南昌: 南昌大学, 2008.
    [28] Jung C H, Seog H M, Choi I W, et al. Antioxidant activities of cultivated and wild Korean ginseng leaves [J]. J Food Chem, 2005, 92(3): 535-540.
    [29] Liu J, Wang C N, Wang Z Z, et al. The antioxidant and free-radical scavenging activities of extract and fractions from corn silk (Zea mays L. ) and related flavone glycosides [J]. Food Chem, 2011, 126(1): 261-269.
    [30] Xu J R, Zhang M W, Liu X H, et al. Correlation between antioxidation and the content of total phenolics and anthocyanin in black soybean accessions [J]. Agricultural Sciences in China, 2007, 6(2): 150-158.
    [31] Zielinska D, Zielinski H. Antioxidant activity of flavone C-glucosides determined by updated analytical strategies [J]. Food Chem, 2011, 124(2): 672-678.
    [32] Zhang Z Q. Effects of dynamic high-pressure microfluidization (DHPM) on the properties and conformation of trypsin and bromelain [D]. Nanchang: Nanchang University, 2010. (in Chinese)
    [33] 张兆琴. 动态高压微射流技术对胰蛋白酶和菠萝蛋白酶性质和构像变化的影响 [D]. 南昌: 南昌大 学, 2010.
    [34] Rice-Evans C A, Miller N J, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids [J]. Free Radic Biol Med, 1996, 20(7): 933-956.
    [35] Cao G H, Sofic E, Prior R L. Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships [J]. Free Radic Biol Med, 1997, 22(5): 749-760.
  • [1] 郜浩安马帅领包括朱品文崔田 . 高硬度超导三元碳化物的高温高压合成. 高压物理学报, 2018, 32(2): 023301-1-023301-8. doi: 10.11858/gywlxb.20170633
    [2] 李尚劼王利伟谭淑珍 . 不同添加剂对超细晶粒度金刚石烧结体组织和性能的影响. 高压物理学报, 1992, 6(3): 192-197 . doi: 10.11858/gywlxb.1992.03.005
    [3] 张清福芶清泉刘履华何明 . 天然金刚石形成透明硼皮金刚石的研究. 高压物理学报, 1989, 3(1): 11-17 . doi: 10.11858/gywlxb.1989.01.002
    [4] 李俶李倩徐金龙刘成梅王召君 . 动态高压微射流对菠萝汁维生素C、总酚含量及其抗氧化性的影响. 高压物理学报, 2013, 27(6): 936-941. doi: 10.11858/gywlxb.2013.06.022
    [5] 王德新薛永进焦庆余刘培銮 . 烧结型金刚石聚晶抗氧化性研究. 高压物理学报, 1987, 1(2): 184-187 . doi: 10.11858/gywlxb.1987.02.013
    [6] 罗舜菁汪志宇刘成梅万婕钟业俊龚二生徐欣源 . 动态高压微射流改性可溶性大豆多糖对大米淀粉理化性质的影响. 高压物理学报, 2014, 28(5): 617-624. doi: 10.11858/gywlxb.2014.05.017
    [7] 刘伟钟业俊刘成梅谢明勇官斌尹曼王倩陈婷婷 . 动态高压微射流技术对木瓜蛋白酶活性的影响. 高压物理学报, 2010, 24(2): 129-135 . doi: 10.11858/gywlxb.2010.02.009
    [8] 白腾辉马汉军潘润淑刘本国马亚萍郝振宇 . 高压处理对酪蛋白酶解产物抗氧化活性的影响. 高压物理学报, 2015, 29(6): 467-474. doi: 10.11858/gywlxb.2015.06.010
    [9] 白成科李桂双段俊彭长连翁克难徐世平 . 高压处理后水稻抗氧化酶活性及对逆境胁迫的响应. 高压物理学报, 2005, 19(3): 235-240 . doi: 10.11858/gywlxb.2005.03.008
    [10] 周林燕关云静毕金峰刘璇李淑荣 . 超高压均质技术在鲜榨果蔬汁加工中应用的研究进展. 高压物理学报, 2016, 30(1): 78-88. doi: 10.11858/gywlxb.2016.01.012
    [11] 邓福铭赵国刚王振廷郭港刘晓慧陈启武 . 聚晶金刚石复合体超高压液相烧结理论研究. 高压物理学报, 2004, 18(3): 252-260 . doi: 10.11858/gywlxb.2004.03.010
    [12] 陈小强章银军张士康励建荣金建昌郑娜杨秀芳 . 超高压处理对毛栓菌多酚氧化酶的影响. 高压物理学报, 2012, 26(2): 235-240. doi: 10.11858/gywlxb.2012.02.018
    [13] 曾庆梅潘见谢慧明杨毅黄训端 . 超高压处理对多酚氧化酶活性的影响. 高压物理学报, 2004, 18(2): 144-148 . doi: 10.11858/gywlxb.2004.02.009
    [14] 冯云春徐依吉赵付国 . 超高压淹没射流破岩规律实验研究. 高压物理学报, 2005, 19(1): 66-70 . doi: 10.11858/gywlxb.2005.01.012
    [15] 沈中毅孙继荣刘世超刘勇黄振坤孙维莹 . 氧化硅(Si3N4)稀土氧化物陶瓷的超高压烧结研究. 高压物理学报, 1993, 7(1): 1-10 . doi: 10.11858/gywlxb.1993.01.001
    [16] 周开勇俞新陆 . 超高压封垫材料力学性能的测试技术. 高压物理学报, 1990, 4(1): 7-16 . doi: 10.11858/gywlxb.1990.01.002
    [17] 龙芳羽史雪萍王蓉蓉姜斌董鹏胡小松 . 超高压技术降低食品过敏原的研究进展. 高压物理学报, 2013, 27(4): 604-608. doi: 10.11858/gywlxb.2013.04.022
    [18] 韩奇钢 . 人造金刚石的制备方法及其超高压技术. 高压物理学报, 2015, 29(4): 313-320. doi: 10.11858/gywlxb.2015.04.012
    [19] 薛胜雄王乐勤彭浩军樊毅斌陈正文王永强于雷朱华清 . 超高压水除锈技术及其阶段性方程. 高压物理学报, 2004, 18(3): 283-288 . doi: 10.11858/gywlxb.2004.03.015
    [20] 万婕刘成梅李俶刘伟 . 动态高压微射流作用对膳食纤维结晶结构的影响. 高压物理学报, 2012, 26(6): 639-644. doi: 10.11858/gywlxb.2012.06.007
  • 加载中
计量
  • 文章访问数:  1091
  • 阅读全文浏览量:  15
  • PDF下载量:  322
出版历程
  • 收稿日期:  2011-10-18
  • 录用日期:  2012-01-21
  • 刊出日期:  2013-06-15

动态高压微射流提取对红薯叶黄酮抗氧化性的影响

    通讯作者: 涂宗财, tuzc_mail@yahoo.com.cn
  • 1. 南昌大学食品科学与技术国家重点实验室,江西南昌 330047;
  • 2. 江西师范大学,江西南昌 330022

摘要: 采用动态高压微射流(DHPM)辅助技术提取红薯叶黄酮,与传统乙醇提取法比较,研究DHPM对红薯叶黄酮抗氧化活性的影响,并通过高效液相色谱-质谱联用技术(HLPC-MS)技术对其机理进行了初步研究。实验结果显示,DHPM可以促进红薯叶细胞壁的破碎和展开,提高总黄酮的提取率,当处理压力为100 MPa时,总黄酮得率最高(5.440%0.006%),与传统浸提相比,得率提高了21.7%。HLPC-MS分析表明,DHPM可以提高提取黄酮的纯度和低极性分子的浓度,对于同一质量浓度的总黄酮样液,80、100 MPa压力下提取的黄酮样液的抗氧化活性较低,120 MPa压力处理所得样品(SF120)抗氧化活性最强,清除DPPH和OH的IC50值分别为15.99 mg/L和0.093 g/L。SF0、SF80和SF100中的主要黄酮类化合物为槲皮素、4',7-二甲氧基山奈酚、杨梅黄酮、商陆黄素和鼠李柠檬素,SF120的主要黄酮类化合物为槲皮素、杨梅黄酮和商陆黄素。

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回