160 GPa压力范围内重新标定的红宝石压标

金柯 吴强 耿华运 蔡灵仓 经褔谦

引用本文:
Citation:

160 GPa压力范围内重新标定的红宝石压标

    通讯作者: 金柯, jinke_102@yahoo.com.cn

A Revised Ruby Pressure Scale up to 160 GPa

    Corresponding author: JIN Ke, jinke_102@yahoo.com.cn ;
  • 摘要: 在同一理论框架内,基于冲击Hugoniot和热力学参数计算了Al、Cu、W、 Au、Pt、Ta、Ag、Mo、Ni、Co和Zn的300 K等温压缩线,并结合现有静高压实验数据,在160 GPa压力范围内重新标定了红宝石压标。所采用的两种红宝石压标形式的标定结果分别为A=1 923.4 GPa、B=9.75和m=1 889.0 GPa、n=5.48,两者具有非常好的自洽性,200 GPa压力范围内确定的压力偏差小于2.1 GPa。基于提出的红宝石压标,重新计算了3组Au等温压缩实验的加载压力。固定等温体模量为167 GPa,重算的实验数据拟合至Vinet物态方程所得等温体模量对压力的一阶偏导为5.95,与超声实验数据非常吻合。
  • [1] Dewaele A, Mezouar M, Guignot N, et al. High melting points of tantalum in a laser heated diamond anvil cell [J]. Phys Rev Lett, 2010, 104(25): 255701.
    [2] Santamaria-Perez D, Mukherjee G D, Schwager B, et al. High pressure melting curve of helium and neon: Deviations from corresponding states theory [J]. Phys Rev B, 2010, 81(21): 214101.
    [3] Klepeis J P, Cynn H, Evans W J, et al. Diamond anvil cell measurement of high pressure yield strength of vanadium using in situ thickness determination [J]. Phys Rev B, 2010, 81(13): 134107.
    [4] Dorogokupets P I, Dewaele A. Equations of state of MgO, Au, Pt, NaCl-B1, and NaCl-B2: Internally consistent high-temperature pressure scales [J]. High Pressure Res, 2007, 27(4): 431-446.
    [5] Ueda Y, Matsui M, Yokoyama A, et al. Temperature-pressure-volume equation of state of the B2 phase of sodium chloride [J]. J Appl Phys, 2008, 103(11): 113513.
    [6] Bassett W A. Diamond anvil cell: 50th birthday [J]. High Pressure Res, 2009, 29(2): 163-186.
    [7] Forman R A, Piermarini G J, Barnett J D, et al. Pressure measurement made by the utilization of ruby sharp line luminescence [J]. Science, 1972, 176(4032): 284-285.
    [8] Piermarini G J, Block S, Barnett J D, et al. Calibration of the pressure dependence of the R1 ruby fluorescence line to 195kbar [J]. J Appl Phys, 1975, 46(6): 2774-2780.
    [9] Decker D L. High pressure equation of state for NaCl, KCl, and CsCl [J]. J Appl Phys, 1971, 42(8): 3239-3244.
    [10] Mao H K, Bell P M, Shaner J W, et al. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0. 06 to 1 Mbar [J]. J Appl Phys, 1978, 49(6): 3276-3283.
    [11] Carter W J, Marsh S P, Fritz J N, et al. The equation of state of selected materials for high pressure reference [J]. Nat Bur Stand (US) Spec Publ, 1971, 326: 147-158.
    [12] Mao H K, Xu J, Bell P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. J Geophys Res, 1986, 91(B5): 4673-4676.
    [13] Zha C S, Mao H K, Hemley R J. Elasticity of MgO and a primary pressure scale to 55 GPa [J]. PNAS, 2000, 97(25): 13494-13499.
    [14] Kunc K, Loa I, Syassen K. Diamond under pressure: Ab initio calculations of the equation of state and optical frequency revisited [J]. High Pressure Res, 2004, 24(1): 101-110.
    [15] Aleksandrov I V, Goncharov A F, Zisman A N, et al. Diamond at high pressure: Raman scattering of light, equation of state, and high pressure scale [J]. Zh Eksp Teor Fiz, 1987, 93(2): 680-691.
    [16] Holzapfel W B. Refinement of the ruby luminescence pressure scale [J]. J Appl Phys, 2003, 93(3): 1813-1818.
    [17] Dorogokupets P I, Oganov A R. Equation of state of Cu and Ag and revised ruby pressure scale [J]. Dokl Earth Sci, 2003, 391A(6): 854-857.
    [18] Kunc K, Loa I, Syassen K. Equation of state and phonon frequency calculations of diamond at high pressures [J]. Phys Rev B, 2003, 68(9): 094107.
    [19] Dewaele A, Loubeyre P, Mezouar M. Equation of state of six metals above 94 GPa [J]. Phys Rev B, 2004, 70(9): 094112.
    [20] Chijioke A D, Nellis W J, Soldatov A, et al. The ruby pressure standard to 150 GPa [J]. J Appl Phys, 2005, 98(11): 114905.
    [21] Silvera I F, Chijioke A D, Nellis W J, et al. Calibration of the ruby pressure scale to 150 GPa [J]. Phys Status Solidi B, 2007, 244(1): 460-467.
    [22] Dorogokupets P I, Oganov A R. Ruby, Metals, and MgO as alternative pressure scales: A semiempirical description of shock-wave, ultrasonic, X-ray, and thermochemical data at high temperatures and pressures [J]. Phys Rev B, 2007, 75(2): 024115.
    [23] Dewaele A, Torrent M, Loubeyre P, et al. Compression curves of transition metals in the Mbar range: Experiments and projector augmented-wave calculations [J]. Phys Rev B, 2008, 78(10): 104102.
    [24] Kennedy G, Keeler R. American Institute of Physics Handbook [M]. New York: McGraw-Hill, 1972.
    [25] Hixson R S, Fritz J N. Shock compression of tungsten and molybdenum [J]. J Appl Phys, 1992, 71(4): 1721-1726.
    [26] Marsh S P. Los Alamos Shock Hugoniot Data [M]. Berkeley: University of California Press, 1980.
    [27] McQueen R G, Marsh S P. Equation of state for nineteen metallic elements from shock wave measurements to two megabars [J]. J Appl Phys, 1960, 31(7): 1253-1269.
    [28] Steinle-Neumann G, Stixrude L, Cohen R E. Absence of lattice strain anomalies at the electronic topological in zinc at high pressure [J]. Phys Rev B, 2001, 63(5): 054103.
    [29] Wang Y, Ahuja R, Johansson B. Reduction of shock-wave data with mean-field potential approach [J]. J Appl Phys, 2002, 92(11): 6616-6620.
    [30] Nellis W J, Moriarty J A, Mitchell A C, et al. Metals physics at ultrahigh pressures: Aluminum, copper, and lead as prototypes [J]. Phys Rev Lett, 1988, 60(14): 1414-1417.
    [31] Jin K, Wu Q, Jing F Q, et al. Simple method for reducing shock wave equation of state to zero kelvin isotherm for metals [J]. J Appl Phys, 2009, 105(4): 043510.
    [32] Jin K, Li X Z, Wu Q, et al. The pressure-volume-temperature equation of state of MgO derived from shock Hugoniot data and its application as a pressure scale [J]. J Appl Phys, 2010, 107(11): 113518.
    [33] Jin K, Wu Q, Geng H Y, et al. Pressure-volume-temperature equations of state of Au and Pt up to 300 GPa and 3000 K: Internally consistent pressure scales [J]. High Pressure Res, 2011, 31(4): 560-580.
    [34] Guinan M W, Steinberg D J. Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements [J]. J Phys Chem Solids, 1974, 35(11): 1501-1512.
    [35] Xu X S, Zhang W X. Introduction to Theoretical Equation of State [M]. Beijing: Science Press, 1986: 517-520. (in Chinese)
    [36] 徐锡申, 张万箱. 实用物态方程理论导引 [M]. 北京: 科学出版社, 1986: 517-520.
    [37] Wang X. Study on experimental techniques for precise measurements of equation of state in metallic materials [D]. Mianyang: China Academy of Engineering Physics, 2004: 89-90. (in Chinese).
    [38] 王翔. 金属材料状态方程精确实验测量技术研究 [D]. 绵阳: 中国工程物理研究院, 2004: 89-90.
    [39] Michell A C, Nellis W J. Shock compression of aluminum, copper, and tantalum [J]. J Appl Phys, 1981, 52(5): 3363-3374.
    [40] Walsh J M, Rice M H, McQueen R G. Shock wave compressions of twenty-seven metals: Equations of state of metals [J]. Phys Rev, 1957, 108(2): 196-216.
    [41] Holzapfel W B, Hartwig M, Sievers W. Equations of state for Cu, Ag, and Au for wide ranges in temperature and pressure up to 500 GPa and above [J]. J Phys Chem Ref Data, 2001, 30(2): 515-529.
    [42] Daniels W B, Smith C S. Pressure derivatives of the elastic constants of copper, silver, and gold to 10000 bar [J]. Phys Rev, 1958, 111(3): 713-721.
    [43] Golding B, Moss S C, Averbach B L. Composition and pressure dependence of the elastic constants of Gold-Nickel alloys [J]. Phys Rev, 1967, 158(3): 637-646.
    [44] Biswas S N, van't Klooster P, Trappeniers N J. Effect of pressure on the elastic constants of noble metals from -196 to +25 ℃ and up to 2500 barⅡ. Silver and gold [J]. Physica B, 1981, 103(2-3): 235-246.
    [45] Heinz D L, Jeanloz R. The equation of state of the gold calibration standard [J]. J Appl Phys, 1984, 55(4): 885-893.
    [46] Akahama Y, Kawamura H, Singh A K. Equation of state of bismuth to 222 GPa and comparison of gold and platinum pressure scales to 145 GPa [J]. J Appl Phys, 2002, 92(10): 5892-5897.
    [47] Shim S, Duffy T S, Kenichi K. Equation of state of gold and its application to the phase boundaries near 660km depth in Earth's mantle [J]. Earth Planet Sci Lett, 2002, 203(2): 729-739.
    [48] Fei Y, Ricolleau A, Frank M, et al. Toward an internally consistent pressure scale [J]. PNAS, 2007, 104(22): 9182-9186.
    [49] Takemura K. Pressure scales and hydrostaticity [J]. High Pressure Res, 2007, 27(4): 465-472.
    [50] Takemura K, Dewaele A. Isothermal equation of state for gold with a He pressure medium [J]. Phys Rev B, 2008, 78(10): 104119.
    [51] Hirose K, Sata N, Komabayashi T, et al. Simultaneous volume measurements of Au and MgO to 140 GPa and thermal equation of state of Au on the MgO pressure scale [J]. Phys Earth Planet Inter, 2008, 167(3-4): 149-154.
    [52] Yokoo M, Kawai N, Nakamura K G, et al. Hugoniot measurement of gold at high pressure of up to 580 GPa [J]. Appl Phys Lett, 2008, 92(5): 051901.
    [53] Vinet P, Smith J R, Ferrante J, et al. Temperature effects on the universal equation of state of solids [J]. Phys Rev B, 1987, 35(4): 1945-1953.
    [54] Birch F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K [J]. J Geophys Res, 1978, 83(B3): 1257-1268.
  • [1] 金柯吴强李欣竹蔡灵仓经福谦 . 金和铂的室温等温物态方程及其压标的意义. 高压物理学报, 2009, 23(3): 181-188 . doi: 10.11858/gywlxb.2009.03.004
    [2] 沈伊民李伯符孙家钟 . 红宝石能谱的理论研究. 高压物理学报, 1990, 4(3): 167-174 . doi: 10.11858/gywlxb.1990.03.002
    [3] 郑海飞孙樯赵金段体玉 . 金刚石压腔高温高压实验的压力标定方法及其现状. 高压物理学报, 2004, 18(1): 78-82 . doi: 10.11858/gywlxb.2004.01.014
    [4] 刘振先崔启良邹广田 . 超高压下红宝石荧光R线的猝灭压力与入射激发线波长的关系. 高压物理学报, 1991, 5(1): 1-7 . doi: 10.11858/gywlxb.1991.01.001
    [5] 乔二伟郑海飞孙樯 . 甲醇作为压标的拉曼研究. 高压物理学报, 2004, 18(4): 368-373 . doi: 10.11858/gywlxb.2004.04.014
    [6] 李大红王悟 . 陶瓷物态方程实验研究. 高压物理学报, 1993, 7(3): 226-231 . doi: 10.11858/gywlxb.1993.03.010
    [7] 吴雄 . 新型爆轰产物物态方程. 高压物理学报, 1991, 5(2): 98-103 . doi: 10.11858/gywlxb.1991.02.003
    [8] 陈其峰蔡灵仓王为傅秋卫陈栋泉经福谦 . 稠密氘气物态方程研究. 高压物理学报, 2000, 14(3): 176-181 . doi: 10.11858/gywlxb.2000.03.004
    [9] 武娜田春玲刘福生匡安农袁宏宽郑兴荣 . 固氖高压物态方程的量子理论计算. 高压物理学报, 2012, 26(1): 41-47. doi: 10.11858/gywlxb.2012.01.006
    [10] 张春斌 . 物态方程的分子动力学研究. 高压物理学报, 1989, 3(1): 51-57 . doi: 10.11858/gywlxb.1989.01.007
    [11] 郑兴荣陈海军高晓红李继弘宋小永 . 高压固氩物态方程的量子理论计算. 高压物理学报, 2017, 31(4): 396-402. doi: 10.11858/gywlxb.2017.04.007
    [12] 刘海风张弓木张其黎宋红州李琼赵艳红孙博宋海峰 . 氢氘物态方程研究进展. 高压物理学报, 2018, 32(5): 050101-1-050101-24. doi: 10.11858/gywlxb.20180587
    [13] 李银成 . 爆轰产物物态方程(Ⅰ)爆热、爆轰产物的等熵方程和物态方程. 高压物理学报, 1998, 12(4): 271-281 . doi: 10.11858/gywlxb.1998.04.006
    [14] 李茂生张春斌 . 关于材料稀疏区的零温物态方程. 高压物理学报, 1990, 4(1): 24-28 . doi: 10.11858/gywlxb.1990.01.004
    [15] 赵艳红段素青刘海风张弓木 . RDX炸药爆轰产物物态方程. 高压物理学报, 2015, 29(1): 47-51. doi: 10.11858/gywlxb.2015.01.008
    [16] 谢元南 . -SiC的电子结构和物态方程. 高压物理学报, 1994, 8(1): 57-59 . doi: 10.11858/gywlxb.1994.01.009
    [17] 江厚满张若棋张寿齐 . 用遗传算法确定材料物态方程参数. 高压物理学报, 1998, 12(1): 47-53 . doi: 10.11858/gywlxb.1998.01.008
    [18] 吴昆裕苏昉谢斌 . 立方晶体超声物态方程弹性参数的高压测量. 高压物理学报, 1994, 8(4): 279-284 . doi: 10.11858/gywlxb.1994.04.006
    [19] 孟川民姬广富黄海军 . 固氩高压物态方程和弹性性质的密度泛函理论计算. 高压物理学报, 2005, 19(4): 353-356 . doi: 10.11858/gywlxb.2005.04.012
    [20] 杨信道刘福生李剑峰经福谦 . 液态甲烷的高温密度物态方程理论研究. 高压物理学报, 1998, 12(2): 120-124 . doi: 10.11858/gywlxb.1998.02.008
  • 加载中
计量
  • 文章访问数:  1384
  • 阅读全文浏览量:  19
  • PDF下载量:  398
出版历程
  • 收稿日期:  2012-02-17
  • 录用日期:  2012-10-23
  • 刊出日期:  2012-12-15

160 GPa压力范围内重新标定的红宝石压标

    通讯作者: 金柯, jinke_102@yahoo.com.cn
  • 1. 中国工程物理研究院流体物理研究所冲击波物理与爆轰物理实验室,四川绵阳 621900

摘要: 在同一理论框架内,基于冲击Hugoniot和热力学参数计算了Al、Cu、W、 Au、Pt、Ta、Ag、Mo、Ni、Co和Zn的300 K等温压缩线,并结合现有静高压实验数据,在160 GPa压力范围内重新标定了红宝石压标。所采用的两种红宝石压标形式的标定结果分别为A=1 923.4 GPa、B=9.75和m=1 889.0 GPa、n=5.48,两者具有非常好的自洽性,200 GPa压力范围内确定的压力偏差小于2.1 GPa。基于提出的红宝石压标,重新计算了3组Au等温压缩实验的加载压力。固定等温体模量为167 GPa,重算的实验数据拟合至Vinet物态方程所得等温体模量对压力的一阶偏导为5.95,与超声实验数据非常吻合。

English Abstract

参考文献 (54)

目录

    /

    返回文章
    返回